
 MARCH 2005 VOLUME:10 ISSUE:3

No. 1 i-Technology Magazine in the World

T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E W W W . S Y S - C O N . C O M / J D J

PLUS...RETAILERS PLEASE DISPLAY
UNTIL MAY 31, 2005

 MARCH 2005 VOLUME:10 ISSUE: VOLUME:10 ISSUE: VOLUME:10 ISSUE:3

Java Naming
Services Internals
Java Annotation Facility-
A Primer

SLOOH.com Delivers Astronomy

to the Mainstream

Making

PDFs PortableDevelopment of
Component-Oriented

Web Interfaces

IN THIS ISSUE...
FEATURES:

Beyond Patterns: Thinking Objects
PAGE 10

Using JDBC & the Template Method
Pattern for Database Access
PAGE 42

Casting Perlin’s Movie Magic in Java3D
PAGE 56

10 YEARS OF JAVA TECHNOLOGY PAGE 34

3March 2005www.SYS-CON.com/JDJ

n a world bristling with TLAs (Three-Let-
ter Acronyms), it’s interesting that one
acronym that has often caused an upset
in the world of software development

should be one containing just two letters: XP.
(No, not *that* XP. What we’re talking about
here is XP as in eXtreme Programming.)
 Back in 2002, in a now-famous essay
provocatively entitled “XP – That Dog Don’t
Hunt,” an independent IT consultant called
Bill Walton wrote: “My position is that XP,
if it does not successfully address these
fundamental problems, will fail of its own
accord. ... First there were the ERP debacles
of the 1990s. Then Y2K. Then Internet mania.
Now XP says to the executive, ‘The problem
is, you’ve been going about this all wrong.’...
The Indian, Russian, Chinese, and other
outsourcing firms have been saying to these
same execs, ‘We understand what you want,
and you can have it. And you can have it for
40 percent less.’ Maybe XP is just what our
foreign competitors have been waiting for.”
 Walton’s essay sparked a huge controversy,
and to this day you can use “XP is Evil” as a
search string on Google.
 Now the controversy has come to JDJ. In
his article last month (“Why Use Extreme
Programming?” [Vol. 10 issue 2]), Troy Hol-
mes wrote that eXtreme Programming “was
created by Kent Beck and Ward Cunningham
back in 1996. XP was one of the first develop-
ment processes that fell into the realm of
iterative programming.”
 To which a highly indignant JDJ reader,
Dennis de Champeaux, writing from San
Jose, CA, has written to say this claim is
“ridiculous.”
 “Even the first paper on the waterfall pro-
cess by Royce in 1970 had feedback arrows
– which were lovingly called ‘salmon ladders’
by others,” de Champeaux points out. He
adds: “An explicit iterative process was
described by Boehm [Hans J. Boehm] before
1988. Thus the claim that Kent Beck created
iterative thinking in 1996 is ridiculous.”
 de Champeaux’s criticisms do not end
there, and his objections seem to encompass
XP itself, not merely Holmes’s article about it.
“Kent Beck keeps advocating that software
development is mainly programming,” de
Champeaux thunders. “This is an activity
in the solution space, while the key issue

remains to figure out what customers want,”
he continues. “Programming is totally terrible
for that activity.”
 “One of the fundamental differences in the
planning phase used in XP is the implemen-
tation of user stories as a way of capturing
use cases,” Holmes wrote in his article. So
far as de Champeaux is concerned this is a
totally unacceptable method: “Jacobson’s use
cases are part of early OO analysis activities
and can be represented best in English or
– if desired – in UML use case diagrams. It is
a very bad idea to start programming when
one has not yet even finished an initial dialog
with the customer to figure out what the
problem is.”
 The fundamental goals of XP, as sum-
marized in Holmes’s article, were “to increase
communication, simplify the development
process, and obtain feedback from the
customer to ensure that requirements were
met.”
 Dennis de Champeaux may be only one
reader, but he claims to represent many:
“This is a serious insult to those that have
worked for decades to develop software
development methods (no not method-
ologies),” he declares, his contempt for XP
nowhere clearer than in the way be begins his
letter of protest: “For many years we have to
endure nonsense from Kent Beck on eXtreme
Programming. Now we find a warm-over by
Troy Holmes about it in JDJ. Why? Why?”
 The answer is that we strive to cover
software development – not even just Java
– from as many different, and sometimes
even opposing, perspectives as possible,
safe in the knowledge that the JDJ reader-
ship worldwide is perfectly able to pick and
choose from among the various methodolo-
gies (or methods, as de Champeaux insists),
just as they are able to pick and choose for
themselves from among the many tools,
services, and solutions we discuss each
month in these pages – and from among the
hundreds of columnists and the thousands
of writers that we have published over the
past nine years.
 We look forward to continuing that
agnostic approach for the next nine years;
meantime, keep that spirited feedback com-
ing – including where you stand on eXtreme
Programming.

From the Group Publisher

XP: eXtremely
Provocative?

 Editorial Board
 Desktop Java Editor: Joe Winchester
 Core and Internals Editor: Calvin Austin
 Contributing Editor: Ajit Sagar
 Contributing Editor: Yakov Fain
 Contributing Editor: Bill Roth
 Contributing Editor: Bill Dudney
 Contributing Editor: Michael Yuan
 Founding Editor: Sean Rhody

Production
 Production Consultant: Jim Morgan
 Associate Art Director: Tami Lima
 Executive Editor: Nancy Valentine
 Associate Editors: Seta Papazian
 Online Editor: Martin Wezdecki
 Research Editor: Bahadir Karuv, PhD

Writers in This Issue
Calvin Austin, Matt BenDaniel, Jeremy Geelan,

Mike Jacobs, Bill Kohl, Kishore Kumar,
Ben Litchfield, Alex Maclinovsky, Joe McNamara,

Kim Polese, Keith Reilly, Ajit Sagar, Krishan Viswanth,
Joe Winchester, Alexey Yakubovich
To submit a proposal for an article, go to

http://grids.sys-con.com/proposal

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department:

888 303-5282
201 802-3012

 subscribe@sys-con.com

Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or

Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 135 Chestnut Ridge Rd., Montvale, NJ 07645

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135
Chestnut Ridge Road, Montvale, NJ 07645. Periodicals postage

rates are paid at Montvale, NJ 07645 and additional mailing
offices. Postmaster: Send address changes to: Java Developer’s
Journal, SYS-CON Publications, Inc., 135 Chestnut Ridge Road,

Montvale, NJ 07645.

©Copyright
Copyright © 2005 by SYS-CON Publications, Inc. All rights reserved. No

part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Kristin Kuhnle, kristin@sys-con.com. SYS-CON Media and
SYS-CON Publications, Inc., reserve the right to revise, republish and

authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

For List Rental Information:
Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com
Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant
Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

 Java and Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

Jeremy Geelan is

group publisher of

SYS-CON Media and

is responsible for the

development of new

titles and technology

portals for the

firm. He regularly

represents SYS-CON at

conferences and trade

shows, speaking to tech-

nology audiences both

in North America

and overseas.

jeremy@sys-con.com

Jeremy Geelan

I

5March 2005www.SYS-CON.com/JDJ

MARCH 2005 VOLUME:10 ISSUE:3

contents
JDJ Cover Story

46

JDJ (ISSN#1087-6944) is published monthly (12 times a year) for $69.99 by
SYS-CON Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.
Periodicals postage rates are paid at Montvale, NJ 07645 and additional
mailing offi ces. Postmaster: Send address changes to: JDJ, SYS-CON
Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.

Features

FROM THE GROUP PUBLISHER

XP: eXtremely Provocative?
by Jeremy Geelan.................................3

VIEWPOINT

From Here to Ubiquity
by Kim Polese.................................6

JAVA ENTERPRISE VIEWPOINT

SOA, MSOA, and Java
by Yakov Fain.................................8

COMPARTMENTS

Development of Component-
Oriented Web Interfaces
A case for the Vitrage Framework
by Alex Maclinovsky & Alexey Yacubovich.................................14

DESKTOP JAVA VIEWPOINT

Go Fast It Runs Too Slow
by Joe Winchester.................................50

DOCUMENTS

Making PDFs Portable
Integrating PDF and Java technology
by Ben Litchfi eld.................................52

@ THE BACKPAGE

SLOOH.com Delivers
Astronomy to the Mainstream
by Matt BenDaniel.................................62

AP/S

Java Naming Services Internals
Implementing a simple client/server-based
JNDI naming service
by Kishore Kumar.................................28

CORE AND INTERNALS VIEWPOINT

Ten Years of Java Technology
by Calvin Austin.................................34

TECHNIQUES

Java Annotation Facility –
A Primer
JDK 5 has changed source code generation
in a seminal way
by Krishan Viswanth.................................36

Beyond Patterns: Thinking Objects
by Bill Kohl

10
by Joe McNamara

Which logging
library is better
for you?

Using JDBC & the Template Method
Pattern for Database Access

by Keith Reilly

42

Casting Perlin’s Movie Magic
in Java 3D

by Michael Jacobs

56

www.SYS-CON.com/JDJ6 March 2005

en years after we officially launched
Java in May 1995, our dream of a
ubiquitous software platform to power
a networked world has actually come

true. Today, some form of Java runs on 1.4
billion devices, and there are more than 4.5
million Java developers worldwide. Mobile
applications like Java-based digital wallets
generated more than $1.4 billion for the
almost 100 mobile carriers who use Java
worldwide in 2003.
 Java was, quite simply, the right technol-
ogy at the right time.
 In the early 1990s, Java’s architects at Sun
anticipated a world in which a ubiquitous
public network would connect devices of all
kinds and let people collaborate on an un-
precedented scale. That was only a few years
before the Mosaic browser was released and
the Web was born.
 When we planned the launch of Java
(then called “Oak”), our goal was ubiquity.
We knew we had a powerful technology, but
our challenge was finding the right platform
on which to launch it. Initial forays in the
nascent PDA and interactive TV markets
proved premature, but our persistence paid
off when we downloaded an early version of
the Mosaic browser.
 We realized that the World Wide Web was
the ideal platform to launch Java. Exciting as
it was, Mosaic displayed only static text and
images. What was missing was interactivity:
the ability to run a program in the Web page,
see animations, and get a real-time response.
So the team developed HotJava, the world’s
first interactive browser, so people could see
animations, live stock quotes, sports scores,
and other data come alive on the Web.
 From the day we released the newly
renamed Java — along with HotJava, the
full spec, and the source code — developers
embraced it .
 Technically, Java broke through platform
barriers. It freed developers from proprietary
hardware, and let them write applications
once for many different operating systems. It
was flexible. As a language, Java was designed
to be small enough to run even on low-pow-
ered mobile devices, but complete enough
to support complex applications. And by
using a virtual machine, Java could address
security problems that had foiled previous

attempts to create portable code.
 In assessing Java’s business potential,
Sun’s top executives realized the potential to
encourage widespread adoption of this pow-
erful technology through free distribution
combined with innovative licensing terms.
With the support of Eric Schmidt and Bill
Joy, we put the full spec and source code for
Java online, while Sun retained the licensing
rights.
 We were convinced that freely distributing
the system to individual developers was the
only viable path to ubiquity. Java was made
freely available for download, which spurred
thousands of software developers to build
“applets,” fueling Java’s growth and adoption
by showing off the potential of the Web.
 When thousands of companies, from start-
ups to major telcos and consumer electron-
ics manufacturers, adopted Java to deploy
new network-based services, its success was
ensured.
 Today, innovation in software is coming
from another powerful phenomenon: open
source development.
 Java benefited greatly from shared learn-
ing and the collaborative development of
hundreds of thousands of software develop-
ers. As an early stepping-stone in the new
era of software design, Java showed what
global, dynamic collaboration between
individual developers could do. The current
open source phenomenon shows the success
of that approach: speedier deployments, dra-
matic cost savings, and often more reliable
software systems.
 The parallels are clear. In fact, Java’s suc-
cess derives from principles that are central
to the growth of open source software:
 First, the key to ubiquity is to make a
technology freely available. Profits come
from elsewhere: the value-added around the
technology. Companies like MySQL and Red
Hat have validated this model.
 Second, technologies that allow greater
independence from proprietary standards
win. Java was an important step in liberating
developers from proprietary hardware. Now,
open source technologies are freeing enter-
prise IT from dependence on proprietary
software.

Viewpoint

Kim Polese

From Here
to Ubiquity

T

While at Sun Micro-

systems, Kim Polese

was part of the

Oak/Java team from

1993 on. As Java’s

original product

manager , she led

its 1995 launch. Kim

left Sun in January

1996 together with

Arthur van Hoff,

Jonathan Payne,

and Sami Shaio to

cofound Marimba,

Inc. As CEO, she led

Marimba through a

successful IPO and

to profitability, and

continued to serve

on the board until

BMC acquired it in

2004. She is now CEO

of SpikeSource, Inc.,

the Kleiner-Perkins-

funded opensource

software company.

President and CEO:
 Fuat Kircaali fuat@sys-con.com

Vice President, Business Development:
 Grisha Davida grisha@sys-con.com

Group Publisher:
 Jeremy Geelan jeremy@sys-con.com

Advertising
Senior Vice President, Sales and Marketing:

 Carmen Gonzalez carmen@sys-con.com
Vice President, Sales and Marketing:

 Miles Silverman miles@sys-con.com
Advertising Sales Director:

 Robyn Forma robyn@sys-con.com
National Sales and Marketing Manager:

 Dennis Leavey dennis@sys-con.com
Advertising Sales Managers:

 Megan Mussa megan@sys-con.com
 Kristin Kuhnle kristin@sys-con.com

Associate Sales Managers:
 Dorothy Gil dorothy@sys-con.com
 Kim Hughes kim@sys-con.com

Editorial
Executive Editor:

 Nancy Valentine nancy@sys-con.com
Associate Editors:

 Seta Papazian seta@sys-con.com
 Online Editor:

 Martin Wezdecki martin@sys-con.com

Production
Production Consultant:

 Jim Morgan jim@sys-con.com
Lead Designer:

 Tami Lima tami@sys-con.com
Art Director:

 Alex Botero alex@sys-con.com
Associate Art Directors:

 Abraham Addo abraham@sys-con.com
 Louis F. Cuffari louis@sys-con.com
 Richard Silverberg richards@sys-con.com

Assistant Art Director:
 Andrea Boden andrea@sys-con.com

Web Services
Information Systems Consultant:

 Robert Diamond robert@sys-con.com
Web Designers:

 Stephen Kilmurray stephen@sys-con.com
 Matthew Pollotta matthew@sys-con.com

Accounting
Financial Analyst:

 Joan LaRose joan@sys-con.com
Accounts Payable:

 Betty White betty@sys-con.com
Accounts Receivable:

 Steve Michelin smichelin@sys-con.com

SYS-CON Events
President, SYS-CON Events:

 Grisha Davida grisha@sys-con.com
National Sales Manager:

 Jim Hanchrow jimh@sys-con.com

Customer Relations
Circulation Service Coordinators:

 Edna Earle Russell edna@sys-con.com
 Linda Lipton linda@sys-con.com
 Monique Floyd monique@sys-con.com

JDJ Store Manager:
 Brunilda Staropoli bruni@sys-con.com

–continued on page 62

www.SYS-CON.com/JDJ8 March 2005

OA is obviously the new buzzword
of the day. Among the many acro-
nyms, one that is seen very often is
“Same Old Architecture.” In many

ways, this is true. The key differentiator
between the paradigms that have been
prevalent in the past and this new incar-
nation of “service-orientation” is that the
new definition of services is targeting the
business as well as the technical side of
the house. Same old architecture – differ-
ent politics.
 Mind you, I am not saying that this not
needed. The processes and governance
that has been formalized around SOA
make for a very effective IT renovation
roadmap. If you are interested in how
SOA assists in IT renovation, check out
the book Enterprise SOA: Service-Oriented
Architecture Best Practices by Dirk Krafzig,
Karl Banke, and Dirk Slama (The Coad
Series). I recently published a review on
this at my blog: http://ajitsagar.javadevel-
opersjournal.com/read/1062164.htm.
 There is a tendency (propagated by
vendors) for the industry to conclude
that SOA means Web services. While
Web services provide the ideal platform
for implementing SOA, they are not the
only option. Everyone automatically
assumes Web services whenever the term
SOA is mentioned. Well, adding Web
services to SOA definitely gives SOA a bit
of an oomph, and differentiates it from
being the “Same Old Architecture.” After
all, if you weren’t using Web services to
implement SOA, what’s new about your
solution?
 While it is true that Web services offer a
very attractive platform for realizing SOA,
they are not the only technology avail-
able to do so. In fact, the main message
behind SOA is not the “Web” but rather
the “service.” The main objective of SOA

is to help organizations move toward a
Service Oriented Enterprise (SOE). The
main problem in organizations that SOA
addresses is the ability to use architecture
as a common tool for IT and business to
achieve a common objective – IT agility.
 I’ve found it a little surprising that
while the term WSOA (Web Service–Ori-
ented Architecture) is around the corner
for everyone on the SOA bandwagon,
no one really talks about MSOA (Mes-
sage Service–Oriented Architecture).
Although I’m sure I haven’t invented this
term, I haven’t found it in my Google
searches. You will find “Message Oriented
Architecture” or “Messaging Service,” but
not MSOA. Messaging is another way to
leverage existing investments to realize
SOA. It provides the protocol and the se-
mantics. What it doesn’t provide right off
the bat is a standard service registry akin
to UDDI. So shouldn’t WSOA be a subset
of MSOA? After all Web services provide
a mechanism to exchange messages
in a loosely coupled architecture and
eliminate the tight coupling mandated by
APIs.
 As I was saying earlier, SOA is not the
new concept – what’s new is its applica-
tion. If you take away the whole message
of “platform and language indepen-
dence,” which never really happens when
you actually implement something, is
the concept any different from what
Java proposed with Jini? In fact, I would
say that Jini is one of the first software
architectures that promoted the concept
of SOA – although they made the mistake
of adding the qualifier “network” to it.
So it got associated with devices, not
software applications. As the “computer”
moved away from being the “network,”
Sun’s message faded into burst bubbles of
.com, and Jini slipped through the cracks.

When you look at Sun’s site, you wonder
“Whither Jini?”
 In the article “Jini Network Technology
Fulfilling Its Promise” (http://java.sun.
com/developer/technicalArticles/In-
terviews/waldo_qa.html) Jim Waldo has
provided some very interesting insights
into where Jini is today (“today” is relative
since the article is about a year old). I
found two statements in the article that
talk about Jini from the SOA perspective:
• Probably the biggest misconception

is that it is concerned primarily with
devices.

• The message about devices hid the
fact that Jini software is really a general
service-oriented architecture.

 It is all about the message. Sun
has never really made any money on
software. If Jini was marketed prop-
erly, it could have been the leading
concept behind the new wave that is
SOA. I remember back in 2000, in one
of my previous lives, I had worked on
a whitepaper where we borrowed the
concepts from Jini and applied them to
transactional marketplaces – the setup
would be similar to what is touted in SOA
today. Perhaps if Sun had used the word
“messaging” instead of “network” and
“service” instead of “device,” Jini would
have evolved into the key architecture
implementation for SOA today.
 On a side note, it’s interesting to see
how SOA has been globally accepted. I
recently received an invitation to a Web
services and SOA conference in China
(details are available at www.ajitsagar.ja-
vadevelopersjournal.com/read/1088114.
htm), where SOA seems to be gaining a
lot of traction. This should be an interest-
ing experience, and I hope to chronicle it
in one of my future editorials.

Java Enterprise Viewpoint

Ajit Sagar
Contributing Editor

SOA, MSOA, and Java

S

Ajit Sagar is a

senior technical architect

with Infosys Technologies,

Ltd., a global consulting

and IT services company.

He has been working with

Java since 1997, and has

more than 15 years’

experience in the IT industry.

During this tenure, he

has been a programmer,

lead architect, director of

engineering, and product

manager for companies from

15 to 25,000 people in size.

Ajit has served as JDJ’s J2EE

editor, was the founding

editor of XML-Journal, and

has been a frequent speaker

at SYS-CON’s Web Services

Edge series of conferences.

He has published more

than 75 articles.

ajitsagar@sys-con.com

Perhaps if Sun had used the word ‘messaging’ instead of ‘network’
and ‘service’ instead of ‘device’, Jini would have evolved into the key

architecture implementation for SOA today”“

����������������������
��

���

��

��

���

���

��

���

�

�
��

��
��

�
��
��

��
��
��

��
�
��

��
��
��
��

���
��
��

��
��
��

��
��

�
��
�
��
��

��
��
��
��
��
���
��

��
��
��

��
��

��
��
�
�
��
��

��
��

�
��
�
��
�
��
�
�
��
�
��
�
�
��

��
�
�
��

�
�
��

�
�
��

�
��
��
��

�
�
��

�
��

��
�
�
��
�
��

��
��
��

��
�
��

�
��
��

��
�
�

��
��

��
��
��
��
���
��
��

�
��
��
��
���

��
��

��
��
��
��

�
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��

���
��

��
��
��
�

����������������������
��

���

��

��

���

���

��

���

�

�
��

��
��

�
��
��

��
��
��

��
�
��

��
��
��
��

���
��
��

��
��
��

��
��

�
��
�
��
��

��
��
��
��
��
���
��

��
��
��

��
��

��
��
�
�
��
��

��
��

�
��
�
��
�
��
�
�
��
�
��
�
�
��

��
�
�
��

�
�
��

�
�
��

�
��
��
��

�
�
��

�
��

��
�
�
��
�
��

��
��
��

��
�
��

�
��
��

��
�
�

��
��

��
��
��
��
���
��
��

�
��
��
��
���

��
��

��
��
��
��

�
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��

���
��

��
��
��
�

www.SYS-CON.com/JDJ10 March 2005

 Algorithm: A detailed sequence of actions to perform to

accomplish some task. – Webster

“Interaction is more powerful than algorithms.” – Wegner

Metaphor: Using a known idea to impart understanding

of a new unknown idea.

atterns and use cases have become accepted tools
for creating OO apps. For many designers they
are their only approach. But getting the full ben-
efit of OOP requires a new way of thinking about
creating object-oriented applications. It is called

“Thinking Objects.” This article will offer a metaphor to
help you understand and begin “Thinking Objects.”

Functionality
 There are two ways of producing functionality in software
that I would like to discuss: sequential (procedural, algo-
rithmic) execution and interaction. People are familiar with
sequential programming. It is the first programming para-
digm taught and a natural way of thinking. It goes like this.
For a given task (result), create a series of steps (and possibly
sub tasks) and carry them out in sequential order. When the
steps have been completed, the desired result is achieved.
 Figure 1 shows the task of mowing the lawn. To per-
form this task we would carry out the sequential set
of steps shown. After completing the last step we have
mowed the lawn. Note that we have acted in a procedural
way, carrying out a series of sequential steps. So,
when accomplishing individual tasks, we think and act
procedurally.

Interaction and the Division of Labor Metaphor
 There is another paradigm for creating functionality; it
is called interaction. Think about modern society. We live in
an age of cars that think, man has gone to the moon, gene
therapy, the Internet. It is a very complex society. And yet it
runs smoothly while getting more complicated every day.
If we were asked to simulate even a small part of this com-
plexity with procedural programming, it would be a difficult
task. How does our society do it?

 We investigate this by looking at another example of achiev-
ing functionality: buying an automobile. If we wish to buy a
car, we go to a dealership and meet a salesman who shows us
cars. When we find what we want, we negotiate a price and
the dealer has a contract printed for us to sign. Now we have
to negotiate a loan, so we go to the bank and see a loan officer.
Meanwhile, the auto salesman has applied for a title to our
automobile. We return with loan in hand, giving the money to
the salesman. He gives us the keys to the car and temporary
title. We have achieved the functionality of buying a car. Notice
that though we have carried out a sequence of steps, it has
required the services of others to complete the process (see
Figure 2). This is fundamentally different than mowing the
lawn, which we did without any help. There we were able to
act individually. Here, we act in cooperation with others whose
functionality is carried out independently of ours.
 Could we have bought the car without help? Would we have
known how to create the sales contract, how to get temporary
title, how to complete the paperwork and credit investigation
to get a loan?
 Probably not, but suppose we could have. What about the
car, could we have designed it? Could we have built it? I think
not.

Corporate Example
 The example above lacks functional descriptiveness. So
I want to offer another example of the second kind of func-
tionality. In this example, the overall functionality produced
is immediately identifiable; it is the goods and services pro-
vided by a corporation to its customers.
 A corporation supplies a specific set of goods and ser-
vices to its customers. These goods and services represent
the corporation’s functionality. Services represent obvi-
ous functionality while goods represent the functionality
required to produce them. Let’s look at how a corporation is
structured to produce that functionality.
 A corporation is an entity. It has facilities and employ-
ees. It has a mission and purpose. How does a corporation
operate? It operates through it employees. Employees of a
corporation have job assignments, and responsibilities that
go with those job assignments. If all the employees carry
out their responsibilities and these responsibilities have
been assigned properly to achieve the corporation’s objec-
tives, it will be successful.

Bill Kohl works as a software

architect for a large petroleum

industry corporation. He has

worked in software for more

than 30 years, the last 15 in

the OO world. He has been

an OO instructor and mentor

and a Smalltalk, C++ and Java

developer and has extensive

experience in developing

object models for enterprise

applications.

wkohl@houston.rr.com

by Bill Kohl

P

A social metaphor for writing software

Beyond Patterns:

Thinking Objects
Feature

11March 2005www.SYS-CON.com/JDJ

A social metaphor for writing software

Beyond Patterns:

Thinking Objects
 Here is the part of the corporation that supplies the
functionality of fulfilling a customer’s order (see Figure 3).
In this diagram, we see four corporate employees. They
will cooperate to fill a customer order. Our corporation
makes a product so a product will have to be assembled to
complete the order. The ellipse represents the corporate
boundary.
 What happens when an order comes in? The order clerk
gets the order from a customer. He or she has some respon-
sibilities to fulfill, for example creating a purchase order,
filing it, distributing copies, etc. After completing these
responsibilities, he or she takes the order and asks the parts
clerk to fill the order. The parts clerk pulls the parts, recon-
ciles the inventory and passes the parts and purchase order
to the assembly clerk, asking him to assemble the order. The
assembly clerk assembles the parts, which then become
the product. The responsibilities of the assembly clerk may
include logging the product and giving it an ID number. He
then passes the purchase order and product to the shipping
clerk. The shipping clerk must determine and affix the post-
age and place the order for pick-up by UPS.
 Here four employees have worked together to complete
the customer order. Each has done their job in filling the
order and has cooperated (interacted) with other employees
to complete the process. This example makes clear how
employees with responsibilities interact to supply an overall
functionality for the corporation. In so doing, employees
need only know how to carry out that part of the process
for which they are responsible. (The idea of responsibility
in object-oriented programming was put forward by Wirfs-
Brock, et al.
 If you haven’t guessed by now, I have been describing
what we know as division of labor, or in software terms,
interaction or collaboration. Division of labor is as old as
human society. It was not invented. It simply evolved as the
best means of handling social complexity. Modern societies
could not exist without it.

Flexibility
 So division of labor evolved to deal with complexity in
society and does an excellent job of it. What other benefits
might it have? It happens to be quite adaptable. At one time
in the history of medicine, a person who became a doctor
was just that, a doctor, not a heart specialist or intestinal
specialist, just a doctor, one variety. You went to a doctor
and he did it all. Today we have medical specialists. But
instead of having to redesign society’s division of labor
structure to accommodate a new medical hierarchy, the
structure simply grew through specialization to accommo-
date the new complexity.

Division of Labor
 Well, since this second kind of functionality has turned
out to have some cool benefits like complexity management
and flexibility maybe we should say a little more about it. We
would like to know what makes it work so well in managing
complexity, where does its flexibility come from and what is
required for its operation?
 How does it manage complexity? There are two kinds of
complexity we are asking about here: data complexity and
functional complexity. The data component is easily identi-
fied. It is all of the factual or data knowledge of our society.
Such things as statistical knowledge, anatomical knowledge

and historical knowledge are data knowledge. The functional
component can be thought of as all the processes that can
be observed in a society, which we will call societal pro-
cesses. Such things as mail delivery, automobile production,
even sending men to the moon are examples of societal pro-
cesses. From these, two types of process can be identified:
discrete societal processes and complex societal processes.
 Discrete societal processes are those that one person can
do, whose performance is normally continuous, which have
clearly defined stopping and starting boundaries and which
can’t be subdivided into smaller discrete processes. These
would include such things as starting a lawn mower or typ-
ing a letter.
 Complex societal processes are those that aren’t dis-
crete. Their completion depends on the execution of many
discrete processes. Two distinct types of complex societal

Figure 1 Mowing the lawn

 Figure 2 Division of labor

 Figure 3 Fulfilling orders

Take order Make order Assemble
 order

Ship order Order shipped

Order Clerk Parts Clerk Assembly Clerk Shipping Clerk

www.SYS-CON.com/JDJ12 March 2005

Feature

processes can be identified: Enclosed and non-enclosed.
An enclosed complex societal process is done by a single
individual through a sequence of discrete processes. A
non-enclosed complex societal process requires the col-
laboration of two or more people to complete. We must
now ask, what is it that creates non-enclosed versus
enclosed processes?
 The answer is specialization. Society has “chunked up”
discrete processes into what it calls specialties. Individuals
in society become ‘Specialists’ within a well-defined,
cohesive chunk of societal functionality called a specialty.
Specialties include professions such as heart surgeon,
auto mechanic or plumber. Functionally, specialties are
composed of collections of related discrete processes. The
purpose of a specialty is to identify discrete chunks of social
functionality that single individuals can comprehend and
master.
 As we shall see, specialists form the basic unit for creat-
ing complex social functionality.

 So far we have been discussing the functional component
of societal knowledge. What about the data component? To
see how the division of labor handles this, we first have to note
that data and function are not inseparable (at least not when
viewed through the division of labor prism). For example,
think of the function required of a heart surgeon. He must
have the process knowledge for performing heart by-pass
surgery, heart massage, valve replacement and many other
procedures. But these processes couldn’t be done without cer-
tain data knowledge including knowledge of human anatomy,
human chemistry, human physiology and other specialized
knowledge. In other words, the heart surgeon must have all of
the data knowledge necessary to carry out the functionality
required of the profession. The division of functional special-
ties defines the division of societal data. Each specialty found
in a division of labor structure includes the data knowledge
required to accomplish the functions required of that special-
ty. Now we can answer the question of how division of labor
manages complexity.

 A phone utility wants to service its customers better

by responding to every customer complaint. Its current

system manually routes complaints from inception to

completion and they sometimes get lost or shuffled to

the bottom of the stack. As a result, response time is slow

or non-existent. The company wants a new automated

system that electronically routes customer complaints

and tracks their progress, setting out an alarm when

certain pre-programmed time limits on a complaint are

exceeded.

 Customers complain of such things as noisy lines,

crosstalk on the line and leaning telephone poles.

A complaint is first registered with the complaint depart-

ment where it is given a priority. From there it is routed

to maintenance. Maintenance schedules a repair date,

and team and dispatches the team on the scheduled date

with a repair order. When the repair is made, the team

notes its completion date and time and any comments on

the repair order. Finally, the customer is notified that the

repair has been made and the complaint ticket is closed.

You are to design and write the application.

 In the business world there are two major kinds of

apps you will run into: data maintenance apps and busi-

ness process (workflow) programs. This app is the busi-

ness process kind. The software is required to enforce and

monitor the process of resolving a customer complaint.

 Now ask yourself the question, “What specialists and

coordination hierarchy would I need to accomplish this

job?”

 If I want to make sure no complaint is misplaced, lost

or slowed down, I would want to assign every complaint

to an employee whose only task is to push that complaint

through the process and never loose track of it.

 For a complaint to be treated as a discrete process in

the utility company’s complaint system, it can be repre-

sented in Java objects as a ComplaintProcess Java class

subclassed under a Process Java class. (For a discussion

of Process Objects see “Beyond Entity Objects,” JDJ, Sept.

’04.) A ComplaintProcess is a process object. But there’s

data accompanying a complaint that we will represent as

a ComplaintForm Java class.

 It is important to note that the ComplaintProcess

class is not a db class. In other words, there will not be

a table representing the ComplaintProcess. (During a

Thinking Objects session implementation details are not

considered.)

 An instance of the ComplaintProcess class, a

ComplaintProcess, will be responsible for moving a cus-

tomer complaint through the required business process.

This corresponds to the horizontal level of coordination in

a business model. Requirements for the ComplaintProcess

class would include electronically routing itself through

the complaint resolution process, maintaining forms relat-

ed to processing the complaint, maintaining response

time-outs with notifications if the complaint is slow in

being processed, and closing out the complaint when the

process is finished.

 Each ComplaintProcess will have to deal with the

customer service department and the maintenance

department. Initially I would assume a façade object

to interface to each of these departments. Since the

façade object will only redirect client requests to other

application objects, there would also be objects rep-

resenting business logic required for interfacing with

each department. So we may have a CustomerServiceS

upervisor and a MaintenanceSupervisor. These objects

would be responsible for creating forms associated

with their department, creating database entries where

required, etc. This suggests that there would be an

object for each different form.

 As a rule, developers put far too few classes in their

apps. So don’t worry about adding new classes as you

think of them. Besides, the ComplaintProcess object may

want to delegate some of its responsibilities for timing to

a timer object. The timer, once started, would run until

time-out when it notifies the ComplaintProcess that it’s

associated with that it has hit time-out. Timers require a

TimerManager responsible for creating new instances and

re-instantiating existing instances from a database

when necessary.

Here is the Java class list:

Process

ComplaintProcess

Timer

TimerManager

Form

ComplaintForm

MaintenanceForm

CustomerServiceSupervisor

MaintenanceSupervisor

MaintenanceScheduler

MaintenanceDispatcher

Vehicle

MaintenanceVehicle

Team

MaintenanceTeam

 Of the classes above, only MaintenanceVehicle,

ComplaintForm, MaintenanceForm, and Timer are likely

to represent a database table. One should create a class

for each database table. But these classes reside in the

database translation layer and shouldn’t become part

of the domain model. A domain model class whose

only data was that of a database table, for example, the

MaintenanceVehicle, would be represented in the data-

base transition layer as MaintenanceVehiclePersistentObje

ct. There are many other Java classes that would make up

this program – for example, Customer, Employee, etc.

A Complaint Resolution System

13March 2005www.SYS-CON.com/JDJ

 Enclosed complex processes are those that can be performed
by a single specialist using only the discrete processes belonging
to that specialty. Examples would include mowing the lawn or typ-
ing a letter. Since enclosed processes belong to a single specialist,
that is a single individual, the functional pattern applied to pro-
duce these processes is the procedural or sequential pattern. This
is a pattern we are familiar with so we have no trouble visualizing
how this functionality is produced.
 Non-enclosed complex processes require the collaboration
of two or more specialists. Examples might include buying an
automobile or building a house. It is with non-enclosed complex
processes that we find a new pattern of creating functionality, one
completely different from the procedural pattern. This pattern is
called interaction or collaboration.
 If we look at society in operation, we see specialists (individu-
als) making their knowledge (data and function) available to
society as a whole by offering services to other members of that
society. It is through the combination of services offered by sets of
specialists that non-enclosed complex processes are realized. We
can characterize this by saying that individuals in society (special-
ists) interact with each other by offering services to others and
using the services offered by others to accomplish complex func-
tionality. Division of labor implies, and to work requires, interac-
tion of this kind among its specialists.
 Interaction has two basic characteristics. The first is special-
ties, units of behavior that externally offer a specific set of cohe-
sive services. The second is communication. Communication is
required for one member of society (a single specialist) to request
and get the specialized services of another member of society. It
is required so that specializations can interact to create complex
functionality.
 (An observation can be made at this point about non-enclosed
complex process knowledge. The truly complex behavior of soci-
ety occurs through the interaction of groups of specialists. One
may ask where the functional knowledge lies for these processes
that span specialties. Let’s take a complex processes like send-
ing men to the moon. A process as complex as this requires more
than simply interaction between sets of specialists, it requires
coordination of this interaction. The responsibility for coordi-
nating the task of sending men to the moon is delegated to a
complex social entity, NASA. A complex social entity is made
up of individual specialists. Some of these will be coordination
specialists. Complex social entities provide services that require
the interaction of many specialists. Thus, complex entities are
formed to coordinate the interactions required to create complex
functionality. Corporations are another example of these complex
social entities.
 To recap: Society uses division of labor to deal with complexity.
Division of labor implies specialization. Specialization decompos-
es data and functional complexity into chunks that a single indi-
vidual, termed a specialist, can deal with. These chunks are called
specializations. A specialist’s knowledge includes both factual
(data) knowledge and process (functional) knowledge. Specialists
offer their services to society in general. Complex social function-
ality is created through the interaction or collaboration of groups
of specialists. This interaction implies communication so that
members of society can request and get services from other mem-
bers of society. It is this interaction between specialists of society
that produces complex functionality such as landing men on the
moon.

Paradigm Shift
 We have seen that our traditional procedural method of creat-
ing functionality is not the only way to create functionality. There is
another method we identified as division of labor in society, but is
called interaction or collaboration in the software world. We have seen
that division of labor manages complexity through specialization.
We have also noted that division of labor is flexible and adaptable to
ever-increasing complexity through subdivision of its specialization
units. And finally we have noted that interaction between specialists
produces all of the extremely complex functionality in society. We can
relate all of this to object-oriented programming. Objects contain data
and function corresponding to the knowledge and process of special-
ists. Objects present an interface through which other objects may use
their services. Messages provide the means for objects to interact and
thereby create complex functionality.
 Object-oriented programming is said to require a paradigm shift.
That shift is from procedural programming to interaction program-
ming. Object-oriented programming applies interaction to create
modern complex software. Objects (specialists) and messages (com-
munication) are used to create software that is more maintainable
and extendible due to its inherent flexibility.

Conclusion
 OOP requires a paradigm shift from procedural thinking to inter-
action thinking. This transition is not an easy one. Procedural think-
ing is natural to humans and the habit is not easily modified.
We have not mentioned what language tools would be necessary
to implement the division of labor pattern. It would require encap-
sulation of data and function to create specialists. It would require
a communication medium between specialists such as messaging.
Identity would be necessary for directing messages to the proper
specialist. Sub-classing and inheritance (sub-specialization) add to
the flexibility as does polymorphism.

A Note on Object Specialists
 Object specialists are different from societies specialists. Object
specialties are those needed to create a software application. We may
say that objects are specialists due to the cohesive functionality they
encapsulate. Object-oriented apps have been referred to as societies
of collaborating objects. In this sense they exhibit many of the same
characteristics as human specialists, interacting with one another to
produce the complex behavior needed in an app. Yet, it is still pos-
sible to produce spaghetti OO code just as it is to produce spaghetti
procedural code. Coupling can be minimized with coordination
specialists, such as NASA, whose responsibility is to decouple objects
from objects and encapsulate processes in themselves (see “Beyond
Entity Objects: Modeling Concepts with Objects,” Java Developers
Journal, Sept. 2004) and by the judicious use of patterns.

Resources
• Wegner, Peter. “Why Interaction Is More Powerful Than

 Algorithms,” Communications of the ACM, May 1997 (http://
 www.cs.brown.edu/people/pw/)

• Wegner, Peter, “Interactive Foundations of Computing,” Final
 Draft, Theoretical Computer Science, February 1998 (http://www.
 cs.brown.edu/people/pw/)

• Wirfs-Brock, R. Object Design, Addison-Wesley, 2003.
 (http://objects bydesign.com/)

• Mullin, Mark. Object-Oriented Program Design: With Examples
 in C++, Addison Wesley Longman, Inc, August 1989

he latest trend in information
portals and Web applications
has been to build complex Web
pages. To present large amounts

of information and functionality with-
out compromising usability, design-
ers have imposed a clear structure by
grouping related elements together.
Such cohesive, visually distinct con-
structs, or compartments, often with
their own presentation logic, have
become an essential feature of com-
plex Web applications.
 The first half of this article intro-
duces the notion of compartments as
a fundamental concept that pervades
the layers of many Web applications
and stages in their lifecycle. It defines
compartments and analyzes their
structure and key characteristics.
Then it will examine the existing
presentation layer technologies for
building compartmentalized appli-
cations and demonstrate their
weaknesses.
 The second half of the article
proposes an architecture and frame-
work that directly support design and
development of compartmentalized
applications and improve their perfor-
mance. It demonstrates how the use
of this framework improves developer
productivity, facilitates reuse and
yields more flexible and maintainable
applications.

Introducing Compartments
 Figure 1 includes screenshots
from some well-known Web sites.
These sites all have a different look-
and-feel from one another, serve
different purposes and address dif-
ferent audiences. However, they use
the same approach to organizing and
presenting a wealth of information
in regular, visually distinct blocks or
compartments. Such compartmen-
talization is common throughout

the Web; a quick survey of a number
of prominent Web sites shows that
many of them use easily identifiable
compartments as primary structural
elements.

Definition
 Despite visual and structural
diversity, all compartments share
fundamental elements. We define
a compartment as a rectangular
area on the page that presents
dynamic content and has the follow-
ing characteristics:
• It has regular structure and layout
• It contains related content elements
• It’s visually and functionally distinct

from the rest of the page
• It has internal presentation logic

(i.e., layout depends on the content
displayed)

• It behaves atomically within the
page.

 To illustrate this definition, these
are some of the compartments that can
be seen on the screenshots in Figure 1:
• On Travelocity – Great Getaways,

Fare Watcher, Cruises & Vacations
and Travel Tools.

• On FirstGov – Agencies, Information
by Topic and In Focus.

 The following elements don’t meet
the definition and wouldn’t be consid-
ered compartments:
• The grey left navigation bar on the

BBC site because it’s static
• “Find me the best priced trip” on

Travelocity because it’s static and
doesn’t have regular structure or pre-
sentation logic

• “E-mail This Page” on FirstGov
and the round navigation buttons
at the top of the Yahoo page (i.e.,
Personalize and Finance) because
they lack regular structure or presen-
tation logic.

Structure and Behavior
 The Programs & Campaigns (P&C)
Compartment presented in 0 came
from one of the systems developed
by the authors. It will be used as an
example in this article.
 Typically a compartment consists
of a header, footer and a body. The
header and footer together define
the visual elements, including frame,
background, title and global links such
as “All Programs” and “All Campaigns”
and the other elements that belong to
the entire block.
 The body consists of a series of
contentlets, elementary units of dynamic
content presentable on a Web page,
separated by optional spacers or other
structural elements. A contentlet has
a number of core attributes: Name,
Description, Image and Display Order.
Additional attributes, such as Date,
Type and Source, may be represented as
needed for a particular problem domain
or implementation. All these attributes
are optional.
 One important type of contentlet is
a Content Reference, which adds anoth-
er core attribute, a URL. Any dynamic
content targeted to a compartment can
be represented as a collection of con-
tentlets.
 In contrast to static page ele-
ments, a compartment has intrinsic
behavior, which is governed by its
presentation logic. Presentation logic
is a set of rules determining how to
render each contentlet, which con-
tentlets are considered renderable
and how to render the entire com-
partment, depending on the collec-
tion of contentlets it receives. Such
rules may include:
• Lay out contentlet attributes in four

columns in order – Image, Name
and Description, Type, Date

• Consider a contentlet renderable if
one of the core attributes is defined

Compartments

by Alex Maclinovsky &
Alexey Yacubovich

Development of Component-
Oriented Web Interfaces

T

Alex Maclinovsky is

a solutions architect

 with Roundarch, Inc. For the last

15 years he has focused on de-

veloping and architecting large

distributed object systems on

enterprise, national and global

scales. His professional interests

include solution-oriented archi-

tectures, adaptive frameworks

and OO methodologies.

amaclinovsky@roundarch.com

Alexey Yakubovich works as a

framework architect at Roun-

darch, Inc. He received his Ph.D.

in mathematics in Moscow

State University for research in

mathematical logic, and has

published more than two-dozen

articles in mathematical maga-

zines. Alexey has spent 20 years

in software development.

ayakubovich@roundarch.com

A case for the Vitrage Framework

14 www.SYS-CON.com/JDJMarch 2005

������������������������������� THIS IS AN ADVERTISEMENT

• Remove the Date column if none of the
rendered contentlet defines it

• Change the compartment title to
“Programs” if all contentlets are the Type
program;

• Remove the entire compartment if it
doesn’t have any renderable contentlets.

 It’s often difficult to demarcate the exact
boundary between business logic and
presentation logic; this is a subject of hot
discussion in the development community1.
A key distinction is that business rules exist
in the problem domain, while presentation
logic is pertinent only to a computer applica-

tion. Nevertheless, presentation logic usually
comes from business requirements and is
equally important in building successful soft-
ware. However, in contrast to the amount of
attention paid to application business logic,
there is considerably less support for imple-
menting presentation logic in Web-based
applications.

Role in Application Lifecycle
 The role of compartments isn’t limited to
system design and construction. Normally,
compartments are identified early in the
development process and used to construct
wireframes, capture functional requirements

and design prototypes. They also play an
important role in testing as a basis for indi-
vidual test cases.

Presentation Technologies
 There are a number of JSP-based tech-
nologies currently available to develop the
presentation layer of compartmentalized
Web applications. Portlets, different flavors
of templates and tag libraries are commonly
used. Each has inherent strengths and
weaknesses.
 Portlets are the most direct realization of
compartments, but they can only be used in
a portal platform. Using a portal platform is
not always appropriate because of the cost,
performance or technical limitations in the
URL structure, as well as problems with
bookmarkability, navigation, the lack of vis-
ibility by Web search engines, layout restric-
tions and other issues.
 Template approaches like SSI, ColdFusion
and Tiles2 make page layouts flexible. They
help to reduce the complexity of JSPs by
breaking them into smaller, more manage-
able fragments that can be reused between
pages. This decomposition can be taken

to the level of individual compartments.
However, such a mechanism can only be
applied to identical JSP fragments; it can’t be
reused for similar compartments. Although
templates can simplify the maintenance of
small JSP applications, advantages disappear
as the number of pages and compartments
on each page grow and developers have to
manage thousands of individual JSPs.
 Neither of these approaches addresses the
rendering of dynamic content or the imple-
mentation of presentation logic inside the
compartments, leaving the developer to rely
on tag libraries.

Custom Tags as the Prevalent Choice
 Custom tag technology has become the
most prevalent tool in developing dynamic
JSP user interfaces. It gained acceptance
because it promised to separate the presenta-
tion from the content, eliminate Java pro-
gramming from JSPs and let HTML designers
use familiar tag syntax.
 Tag libraries work really well in many
cases, but become less usable in more com-
plicated cases, particularly when JSPs need to
implement the non-trivial presentation logic
often required by compartments. That’s why
publications promoting tag libraries never go
beyond the simplest examples3. Sun’s imple-
mentation of Pet Store illustrates this point
perfectly. Pet Store serves as a blueprint for
building applications using J2EE technolo-

Compartments

 Figure 1 Compartments on familiar sites

16 www.SYS-CON.com/JDJMarch 2005

 Figure 2 Summary results of compartmentalization survey

Page URL Compartments
Yahoo home page http://www.yahoo.com/ 19

Excite home page http://www.excite.com 16

Carsdirect home page http://www.carsdirect.com/ 11

Amazon entry page http://www.amazon.com 23

FirstGov for Business FirstGov.gov 11

CDC home page http://www.cdc.gov/ 5

Illinois State home page http://www.il.gov/ 11

Travelocity home page http://www.travelocity.com/ 8

Delta home page http://www.delta.com/ 9

Deloitte careers page http://careers.deloitte.com/ 7

BBC News http://news.bbc.co.uk/ 17

http://www.reportingengines.com/download/21ways.jsp

A free offer for readers of Java Developer’s Journal!

Formula One e.Spreadsheet Engine:
Finally, there’s a supported, Pure Java
tool that merges the power of Excel
spreadsheets and Java applications.

1 Automatically generate dynamic
Excel reports. No more manual
querying and cutting-and-pasting
to create Excel reports!

2 Manage calculations and business
rules on J2EE servers with Excel
fi les. No more translating Excel
formulas to Java code!

3 Embed live, Excel-compatible data
grids in applets and Java desktop
applications. No more static HTML
or presentation-only data grids!

Download your trial and test our demos
and sample code. See for yourself how
the Formula One e.Spreadsheet Engine
can help your Java application leverage
the skills of Excel users in your business.

Download
this quick-read
white paper
and trial today!

888-884-8665 • www.reportingengines.com
sales@reportingengines.com

FREE TRIALS,

DEMOS, &

SAMPLE

CODE!

http://www.reportingengines.com/download/f1ere.jsp

Build reports against JDBC, XML, Java objects, BEA Portal Server logs, BEA
Liquid Data, and other sources visually or with Java code. It’s embedded!
No external report server to set up. Unlimited users and CPUs per license.

Copyright © 2004 ReportingEngines (a division of Actuate Corporation). All rights reserved. Formula One is a registered trademark of Actuate Corporation.
Java and Java-based trademarks and logos are the trademarks or registered trademarks of Sun Microsystems Inc., in the United States and other countries. All other trademarks are property of their respective owners. All specifi cations subject to change without notice.

www.SYS-CON.com/JDJ18 March 2005

gies like JSTL tags, but the most complex
table is limited to static columns and
doesn’t have any presentation logic.

A Real-Life Example
 To see how this works in the real
world, consider the P&C Compartment
presented in 0 that came from an actual
application.
 The compartment is designed to
present a collection of contentlets
arranged in a one-column table, one
object per cell. Contentlets are consid-
ered renderable as long as they have one
core attribute defined. The following
requirements should also be satisfied:
• Invalid and unrenderable contentlets

should be omitted
• If no contentlets were rendered, the

entire table with its header, footer,
frame and background should not be
rendered

• Visual attributes should be arranged
vertically in the following order: image,
followed by name, then description – if
an attribute is undefined, it should be
omitted.

 If the contentlet is a Content
Reference, these additional rules apply:
• If an image is present, it should be ren-

dered as the link
• If there is no image, the name should

be rendered as the link
• The description is never rendered as a

link.

 These requirements are quite mod-
est, and the compartment occupies
only a small part of a page. The table
below contains key metrics summariz-
ing implementations with BEA portal tag
libraries and with Sun’s JSTL, illustrating
the complexity of implementing even the
simple P&C Compartment using custom
tags. The development was done by
experienced Web programmers.
 The actual JSP code is too complex
to be presented here although it’s avail-
able online, along with a more in-depth
analysis in the form of a whitepaper. This
implementation would not be signifi-
cantly simplified by using portlets or Tiles
templates.
 Using this approach to develop a
page with 10 or more compartments will
result in thousands of lines of JSP code,
making it highly inefficient for imple-
menting applications similar to the ones
presented in Figure 1.

Why Tags Fail
 The reason custom tags lead to
such complexity is that tag libraries are
designed to cover the basic HTML con-
structs like anchors, tables and forms.
 They are effective when the layout
doesn’t depend on content. The later tag
library extensions supporting loops, con-
ditions and other control flow constructs
inside a JSP (i.e., iteration, choice and
choiceMethod) have very limited capa-
bilities and poor expressive power for
programming presentation logic.
 In other words, tag libraries force
developers to program in a primitive
language that lacks clear structure and
doesn’t allow code reuse beyond simple
includes and cut-and-paste. To compli-
cate things, there are many incompatible
flavors of this language, each with its
own quirks and limitations. For example,
BEA’s netui-data library let one use
choice statements only inside a loop,
while a c:url tag in a JSTL doesn’t support
named anchors.
 It has been firmly established that
a JSP is not a good place for exercising

imperative programming, be it java
scriplets programming or tag program-
ming. A new approach is needed that
can solve the problem of developing
dynamic compartmentalized applica-
tions effectively.

Success Criteria
 How would you measure the success
of this new approach? Previous analysis
has helped formulate key criteria for its
success.
1. Direct support for key abstractions

from the problem domain – compart-
ments, contentlets and Presentation
Logic.

2. Produce clean, simple, easily main-
tainable JSPs free of any logical
programming.

3. Use appropriate means to express dif-
ferent presentational aspects – let pro-
grammers implement logic and data
manipulation in Java, while allowing
Web designers to define visual design
using familiar syntax and tools.

4. Facilitate both physical and logical
reuse, allowing presentation compo-
nents to be used in multiple places
and combined into more complex
ones, as well as reuse of common
functionality through inheritance and
delegation.

5. Increase developer productivity.
6. Ensure compatibility with a wide vari-

ety of existing J2EE platforms, MVC
architecture and mainstream frame-
works.

7. Remain complementary to existing
presentation technologies, and allow
combining them when appropriate.

Vitrage Framework
 In developing large information
portals, we have faced all the challenges
described in the first half of this article.
Having experienced the disappointments
of existing approaches, we set out to
develop a new solution that would meet
the criteria outlined above. The result
is called the Vitrage Framework, vitrage
being the French word for stained glass.
Vitrage is a solution centered around
the notion of JSP-blocks. A JSP-block
is the Java realization of compartment
abstraction.

Architecture
 The diagram in Figure 4 presents the
structural components of the Vitrage
Framework. It contains three major com-

Compartments

 Figure 3 Programs & Campaigns Compartment

Vendor Number Number of Individual Level of
 of lines different tags tag occurrence tag nesting
BEA 129 9 29 3
Portal
JSTL 105 7 24 3

� ���

���

���

��

���

���

���

���

��

��

��������������������������������

�

���

���������������������������

����������������������������������
���

���

���

�������������

�

�������������������������������

� ���

��

���

��������������������

��� ���

� ���

� ���

� ���

� ��

� ��

� ��

��� ���

� ��

� ��

� ��

� ���

� ���

� ��

��

� ��

��

��

��

���

��

����������������������������������

�� ��

� ��

� ���

��� ���

� ��

��� ���

� ���

� ��

�� ���

���

��� ��

� ���

� ���

� �������������������

������������������

� ���

���

���

��

� ���

���

���

��

��

���������������������������������������

� ��

���

��

���

��

�����������

� ��

���

��

���

��

��

���

��� �� �

� ��������������

��� ������������������

��� ������������������

��� ���

��� ��

�

���������

� ���

��

� ��

���

��

���

������������������������������

������������������

� ���

���

��

� ���

��

���

���

���

��

���

� ��

���

���

��

��

� ��

��������������

��� ����������������������������������

��� ��������������������������

��� �����������������������������

��� ���

��� ������������������������������

��� �����������������������������

� ��

���

���

��� ��

� ��

� ���

� ��

� ������

��� ���

� ��

� ��

� ��

� ��

�������
� ��

��

���

��

��

� ���

��

�����������������

����������
� ��

���

��

��

� ���

���

�

� � � � � � � � � � � � � � � � �
���
���
���
���
��
���

��
���
���
���
��
���
���
���
������������������������������������

��
��

��
��

� ������� �������������������������

www.SYS-CON.com/JDJ20 March 2005

ponents: HTML Code Generation, Vitrage
Container and Development Tools. The
HTML generation itself is implemented
on three levels: formatters, renders and
blocks. Each layer uses components
of lower layers and adds some new
functionality.

Formatters
 Formatters are used to generate
elementary HTML tags with parameters
at runtime. Tag parameters can specify
layout attributes (such as background,
border and span), as well as functional
attributes (such as name, value and
href). Formatters provide the low-level
HTML-specific structure for JSP-blocks.

Renders
 Renders use formatters as building
blocks. There are three layers of renders:
content renders, HTML element renders
and Composite renders. All renders
implement an interface ARender. This
interface has two key methods:

String build(Object o, ICondition c);

void setLayout(ILayout l);

 The method build() is invoked to

generate HTML fragment, the method
setLayout() is used to specify layout
parameters for a render.
 Content renders are responsible for
presenting actual content. Currently,
this category includes several flavors of
contentlet renders. Vitrage implements a
number of content renders with internal
managers or Oracles that cover a variety
of presentation strategies for contentlets.
Another useful type of content render
is Document Render, which can be
used to embed an entire file into a page.
Additional domain-specific renders can
be implemented if required.
 HTML renders use content renders
to arrange content into a required HTML
structure. Vitrage contains a broad
selection of HTML renders including
CellRender, RowRender, TableRender
and SpanRender. FlatRender plays a
special role; it’s used to insert a static
HTML fragment, usually obtained from
the resource bundle, into the generated
HTML structure. For instance, when an
HTML table is generated, the FlatRender
can provide a spacer between rows.
 Composite renders like Serial-Render
and ConditionalRender logically com-
bine other renders.
 The SerialRender serves as an
ordered container of other renders
that invokes them sequentially. The
ConditionalRender contains a collection
of pairs of objects. Each pair consists of a
render object and a condition object that
implements the interface ICondition.
The ConditionalRender in the build()
method iterates over each pair, checking
if the condition is true, and for the first of
such pairs, invokes a build() method on
a corresponding render. Only one render
is invoked. If no condition satisfied, the
ConditionalRender returns an empty
string.
 The following code fragment dem-
onstrates assembling standard Vitrage
renders into a custom render for the JSP-
block that implements the P&C compart-
ment described above.

1 public ARender prepareRender(

2 IBlockData data)

3 {

4 CntRefRender crr =

5 new CntRefRender(BASE_ALIGN);

6 crr.setImageCntrParam(true,

7 true, true);

8 crr.rightHanderBlock();

9 crr.setLayout(new ConRefLayout(

10 cssClass, 0, 0, 0));

11 CellRender cr =

12 new CellRender(crr, BASE_ALIGN);

13 RowRender rr = new RowRender(cr,

14 BASE_ALIGN);

15 ConditionalRender spr =

16 new ConditionalRender();

17 spr.addRender(new FlatRender(rs),

18 new NotRslv(new FirstElemRslv()));

19 SerialRender mr =

20 new SerialRender();

21 mr.addRender(spr);

22 mr.addRender(rr);

23 return mr;

24}

 At the top of the hierarchy is the main
render object mr of class SerianRender.
That render contains two renders: rr,
which renders the actual rows, and spr.
The second one is responsible for spac-
ing between rows of the result table. It is
a conditional render that will include a
spacer HTML fragment defined in rs for
all rows except the first one. The value is
read from a resource bundle at startup.
The first row in the result table doesn’t
require a spacer. The object of class
FirstElemRslv recognizes the first row in
a table and the result is negated by object
NotRsvl.
 The second part of the main render is
the chain of RowRender, CellRender and
CntRefRender renders. These renders
draw row tag, cell tag and the content ref-
erence object representation correspond-
ingly. The following diagram illustrates
how a block render is assembled from
standard renders.
 Let’s consider how a render processes
each contentlet.
 When method build() is invoked on a
render, it normally creates a StringBuffer
and generates some HTML code into
that buffer. For instance, if the main
render is a RowRender, it adds an open-
ing tag <TR> to the buffer with attributes
specified in its layout object. Then the
render invokes build() method on all
contained renders in turn, passing along
the contentlet. It adds the results from
the containing renders to the buffer; then
performs necessary post-processing (i.e.,
adds a closing </TR> tag and returns the
content of the buffer). The outer render
can always intercept and modify results
of its inner renders.

JSP-blocks
 The top level of code generation

Compartments

 Figure 4 Architecture of the Vitrage Framework

Vitrage Runtime
Forward

Development Tools

HTML Code Generation

JSP Blocks

Controls
Regular
Blocks

Composites

Renders

Content

HTML

Composite

Formatters

 Figure 5 Architecture of the Vitrage Framework

www.SYS-CON.com/JDJ22 March 2005

is provided by JSP-blocks. All blocks
implement the IBlock interface with
the method:

String build(HttpServletRequest r);

 That method is invoked at the time of
rendering from the JSP.
 The Vitrage Framework implements
three types of blocks: Controls, Regular
blocks, and Composites.
 Controls are the simplest kind of
blocks to extend class ABlock directly
and have to provide their own imple-
mentation of method build(). Typically
they don’t render contentlets but
are used to create smart titles, pagination
controls and A-to-Z indices, for example.
 Regular blocks are responsible for
rendering collections of contentlets in
compartments. They encompass prob-
ably more than 90% of all blocks in a typ-
ical application. Regular blocks extend
abstract class SimpleBlock. They should
implement only two methods:

IBlockData getData(HttpServletRequest r,

String gn);

ARender prepareRender(IBlockData d);

 Method getData() is responsible
for obtaining data, normally from the
request object. Typically, IBlockData
would contain a collection of contentlets

and other supplementary data, such as
the title of the compartment. Method
prepareRender() assembles a block-spe-
cific render from standard renders.
 Class SimpleBlock implements meth-
od build(). This implementation gener-
ates the block’s header, then iterates over
contentlets passed in the IBlockData
object and generates the footer. While
iterating over contentlets, it passes each
one to the block’s render, accumulat-
ing the result and recovering from any
exceptions. If one contentlet was ren-
dered successfully, build() returns the
entire HTML; otherwise, it flushes the
buffer and returns an empty string.
 Such architecture allows implement-
ing presentation logic on multiple levels:
for each contentlet inside the block’s
render and for the entire block in build()
method. Composite blocks implement
such logic on an inter-block level.
 This design facilitates a high degree
of code reuse among blocks. Figure 7
contains a complete implementation for
a class that renders the P&C compart-
ment with all the business requirements
listed above:

1 public class PAProgramsCompaigns

2 extends RegularRightBlock

3 {

4 public PAProgramsCompaigns(

5 String title, String blockID)

6 {

7 super(title, blockID);

8 setEndFrag(

9 getResource(blockId, END_FRAG));

10 setCssClass(

11 getResource(blockId, CSS_CLASS));

12 rowSpacer = getResource(blockId,

13 ROW_SPACER);

14 }

15}

 Class PAProgramsCompaigns inher-
its from RightHandBlock, as shown in
Error! Reference source not found.
Error! Reference source not found.con-
tains com-pletes the RightHandBlock
class implementation.

1 abstract public class RightHandBlock

2 extends CTSearchEntryBlock

3 {

4 String rowSpacer;

5 public RightHandBlock(String title,

6 String id)

7 { super(title, blockID); }

8

9 protected String getStartFrag()

10 {return getResource(id, FSTART);}

11

12 public ARender prepareRender(

13 IBlockData data)

14 { // see Figure 5 }

15}

 All classes above PAProgramsCom-
paigns are reused by other blocks in the
application and don’t contain any code
specific to the P&C compartment. As a
result, the whole compartment imple-
mentation takes just 10 lines of code.
 This example clearly demonstrates
that code reuse in the Vitrage Framework
can make a block implementation very
simple. These examples were taken from
an application that actually contains a
dozen compartments that differ only
slightly from the P&C compartment.
With Java inheritance, implementing a
slightly different compartment can be
accomplished with a small number of
Java statements. As discussed above,
with custom tags, it would probably take
another 29 tag occurrences and 129 lines
of JSP code for each compartment.
 The JSP fragment that invokes the
block looks as simple as:

<blocks:useBlock blockId=”PE12”/>

 The parameter PE12 is a unique
block identifier.
 The last type of JSP-block in Vitrage is
Composites. These blocks manage col-
lections of other blocks and apply some
logic to coordinate the code generation
between inner blocks. Composites pro-
vide inter-block layout automation; this
part of the framework was developed
with a view to creating lightweight port-
lets usable outside portal platforms. In
their present form, composites are used
to manage HTML surrounding blocks,
e.g., when several blocks share a single
frame that should be rendered if at least
one of them produces any content.

Building Compartmentalized
Applications with Vitrage
 Vitrage Framework can help save
resources and improve the process of
developing Web applications.

Use
 When assembling a JSP from blocks,
the most common syntax is to use a cus-
tom tag from the blocks library provided

Compartments

 Figure 6 Composition of a block render

mr: SerialRender

sr: Conditional Render

:FlatRender

:child render child’s condition

: NotRslv

: FirstElemRslv

1: controls
negated conditions

crr: CntRefRender

cell content

cr: CellRender

rr: RowRender

first cell

first element second element

L L

LLL

L L

 Figure 7 Implementation of PAProgramsCompaigns

www.SYS-CON.com/JDJ24 March 2005

Compartments

with the framework:

<blocks:useBlock blockId=”PE1”/>

 In this example, PE1 is a unique
block ID that identifies a compartment
in the page design. Alternatively, a JSP-
block can be invoked directly from a
scriplet:

<% BlockFacade.useBlock(“PE1”, request) %>

 Runtime code behind these con-
structs is not exactly the same. Custom
tag style invocation has a small over-
head: an object of class InvokeBlockTag
that implements custom tag blocks:use-
Block will be created for each invocation
of each JSP page. With a scriplet invoca-
tion, such overhead is eliminated. In
either case, the HTML developer uses
identical code, varying just the block ID.

Vitrage Container
 Vitrage includes a containier that
manages the lifecycle of JSP-blocks,
including block initialization, cach-
ing and invocation, similar to the way
the JSR 168 Portlet Container manages
portlets. This similarity runs further: in
Vitrage, only one instance of each JSP-
block is created for the entire applica-
tion. All JSP invocations reuse that single
instance without the unnecessary cre-
ation and garbage collection overhead.
JSP-blocks are thread-safe, and one
instance of each block is created dur-
ing application initialization and kept
alive in the block cache. In some cases,
that could save a significant amount
of resources. By contrast, custom tags
aren’t thread-safe by design, and a new
instance of each tag is created on each
JSP invocation.

Resources & Prototypes
 One of the selling points of tag library
technology is the separation between
content and layout. Normally, JSP con-
tent comes from a database and is ren-
dered by custom tags, while the layout is
specified directly in the JSP. This prevents
content from affecting layout, as is often
required by the presentation logic.

 Since this approach doesn’t work
for compartmentalized applications,
Vitrage has to use another way to sup-
port such separation. On the page level
outside of the block scope, static layout
elements are still kept in the JSPs. A
compartment may contain both static
and dynamic internal layout elements.
The dynamic elements are generated
in JSP-blocks, while static elements are
located in resource bundles and loaded
at application startup. This also lets the
Vitrage Framework support JSP-block
internationalization. While similar to
how internationalization is provided in
Struts, it could be more runtime effec-
tive; the only instance of a block is cre-
ated on application initialization, while
with custom tags, a resource will be
read on each JSP invocation.

Development Tools
 Vitrage provides a structured
means for integration between com-
partments realized by JSP-blocks
and the application’s back-end,
which relies on strongly typed
universal transport objects such
as IblockData, Contentlet and
ContentReference.
 Taking advantage of this architec-
ture, Vitrage supports two modes for
serving content to JSP-blocks. In the
production mode, each block obtains
its content from the request, where it
was put by the controller. In the test
mode, all invocations of getData()
are intercepted and forwarded to
TestDataProvider component, which
supplies test data in the format expect-
ed by the block. It takes some work
to fill TestDataProvider with test data,
but lets front-end development move
forward independent of the application
back-end. This way, Vitrage supports
testing and integrating front-end com-
ponents on several levels:
• As individual JSP-blocks with JUnit

test suite, with output redirected to
an HTML file, which can be viewed
in browser; this method doesn’t
require any application or Web serv-
er or any application back-end

• As complete JSP pages inside the

Web container without any Model or
Controller components

• As a complete MVC application,
bypassing the lack of test data in the
database

• Conventional end-to-end integra-
tion testing.

Conclusion
 Modern Web applications use
increasingly complex pages with
compartments and exhibit sophisti-
cated presentation logic. Tag librar-
ies, JSP templates and portlets don’t
give developers adequate support
for effectively implementing such
dynamic front-ends. Being highly
compatible with various J2EE plat-
forms, MVC frameworks and tag
libraries, the Vitrage Framework
offers extensive support for compart-
mentalized applications. In many
cases it also improves support for
the application development process
and provides significant performance
gains for the resulting application. In
some cases it permits the develop-
ment of applications that wouldn’t be
feasible with tag libraries, templates
or portlets. Additionally, develop-
ing applications with the Vitrage
Framework can economize resources
and time.

References
• Vitrage Whitepaper. http://www.

roundarch.com/about.html
• JSTL specification. http://jcp.org/

aboutJava/communityprocess/final/
jsr052/

• BEA Tag Library. http://e-docs.bea.
com/workshop/docs81/doc/en/
workshop/reference/tags/navJspTags.
html

• More on Tag limitations. http://www.
theserverside.com/articles/article.
jsp?l=BestBothWorlds

• Separation of Business Logic from
Presentation Logic in Web Applications
http://www.paragoncorporation.
com/ArticleDetail.aspx?ArticleID=21

• Tiles 101/201 by Patrick Peak http://
www.theserverside.com/resources/
article.jsp?l=Tiles101

• A Brief History of Tags by Rich Rosen,
JDJ, 2003, Volume:8, Issue:6 pages
10-22.

• Enterprise BluePrints http://java.sun.
com/blueprints/enterprise/index.
html

One of the selling points of tag library technology
is the separation between content and layout”“

������������� ��

���

�������������� ��

���

�� ����������������������

���������������
�����������������
�������������
�� ����������������
�� �� ��������������

� ��

��
���

���������������������������������
������������������������������������

Kiss those long and tedious hours of integrating
reporting into your applications goodbye. New
Crystal Reports® XI, from Business Objects, adds
a host of new functionality designed to reduce
the time you spend creating, integrating and
deploying reporting solutions. An enhanced
designer, extended API and new deployment
options, offer you and your end-users high quality
viewing, printing and exporting with less effort.

��������������������������
Also new to Crystal Reports XI Developer Edition
is a royalty free runtime license which allows for
unlimited internal corporate deployment of the
Crystal Reports .NET, Java™ and COM (RDC)
report engine components without having to pay
additional licensing fees for multiple servers or CPUs.

��������������������������������
�������������������������Use an updated point-and-
click designer to create reports and alleviate intensive coding.
�����������������������Increase your report design
productivity by reusing existing report objects across
multiple projects.
��������������������������������Improve QA.
Quickly find broken links, formula errors and
dependency issues.
�������������������������Quickly check web report
design layout in an HTML preview pane.

���������������������������
�����������������������Embed report creation
functionality into your apps with no additional licensing
fees, now included with the Developer edition.
����������������������������Include server-side
printing and sub-report configuration functionality.

��������������������
��������������������� Distribute reports to multiple
formats including XLS, PDF, XML and HTML without
the need for coding.
������������������������������� Minimize report
maintenance with automatically updated pick lists and
cascading prompts.
�����������������������������Publish reports to the
web for secure viewing, printing and exporting with
a new report server option.

Get home sooner with Crystal Reports XI. Visit
������������������������������� for full
product details, information on our new free
runtime license or for a free eval download. To
contact us directly please call ���������������

Bu
sin

ess
 O

bje
cts

, t
he

 B
us

in
ess

 O
bje

cts
 lo

go
 an

d C
ry

sta
l R

ep
or

ts
ar

e t
ra

de
ma

rk
s o

r r
eg

ist
ere

d t
ra

de
ma

rk
s o

f B
us

in
ess

 O
bje

cts
 SA

 or
 it

s a
ffi l

iat
ed

 co
mp

an
ies

. C
op

yr
igh

t ©
 20

05
 B

us
in

ess
 O

bje
cts

 SA
. A

ll r
igh

ts
res

erv
ed

.

* This feature is available as part of the Crystal Reports Server, included with Crystal Reports Developer edition.

��
���

���������������������������������
������������������������������������

Kiss those long and tedious hours of integrating
reporting into your applications goodbye. New
Crystal Reports® XI, from Business Objects, adds
a host of new functionality designed to reduce
the time you spend creating, integrating and
deploying reporting solutions. An enhanced
designer, extended API and new deployment
options, offer you and your end-users high quality
viewing, printing and exporting with less effort.

��������������������������
Also new to Crystal Reports XI Developer Edition
is a royalty free runtime license which allows for
unlimited internal corporate deployment of the
Crystal Reports .NET, Java™ and COM (RDC)
report engine components without having to pay
additional licensing fees for multiple servers or CPUs.

��������������������������������
�������������������������Use an updated point-and-
click designer to create reports and alleviate intensive coding.
�����������������������Increase your report design
productivity by reusing existing report objects across
multiple projects.
��������������������������������Improve QA.
Quickly find broken links, formula errors and
dependency issues.
�������������������������Quickly check web report
design layout in an HTML preview pane.

���������������������������
�����������������������Embed report creation
functionality into your apps with no additional licensing
fees, now included with the Developer edition.
����������������������������Include server-side
printing and sub-report configuration functionality.

��������������������
��������������������� Distribute reports to multiple
formats including XLS, PDF, XML and HTML without
the need for coding.
������������������������������� Minimize report
maintenance with automatically updated pick lists and
cascading prompts.
�����������������������������Publish reports to the
web for secure viewing, printing and exporting with
a new report server option.

Get home sooner with Crystal Reports XI. Visit
������������������������������� for full
product details, information on our new free
runtime license or for a free eval download. To
contact us directly please call ���������������

Bu
sin

ess
 O

bje
cts

, t
he

 B
us

in
ess

 O
bje

cts
 lo

go
 an

d C
ry

sta
l R

ep
or

ts
ar

e t
ra

de
ma

rk
s o

r r
eg

ist
ere

d t
ra

de
ma

rk
s o

f B
us

in
ess

 O
bje

cts
 SA

 or
 it

s a
ffi l

iat
ed

 co
mp

an
ies

. C
op

yr
igh

t ©
 20

05
 B

us
in

ess
 O

bje
cts

 SA
. A

ll r
igh

ts
res

erv
ed

.

* This feature is available as part of the Crystal Reports Server, included with Crystal Reports Developer edition.

www.SYS-CON.com/JDJ28 March 2005

he Java Naming and Directory
Interface (JNDI) is a standard
API to access different naming
and directory service imple-

mentations like LDAP. A naming
service provides naming functionality
and a directory service provides appli-
cations with directory functionality.
The Java naming service is a fun-
damental component of every J2EE
system.
 JNDI consists of a client API and
a service provider interface (SPI).
The client application uses the cli-
ent API to access various naming
and directory services. The SPI lets
naming and directory service imple-
mentations be plugged into the JNDI
framework.
 In this article, we will explore how
to use the JNDI SPI to implement a
simple client/server-based naming
service.

Naming Service Architecture
 Figure 1 shows the architecture and
the various components of a typical
Java naming service:
 The first thing any JNDI client
does is to create an InitialContext
object. The InitialContext uses
an URLContextFactory to create a
Context implementation. The nam-
ing service provider supplies the
URLContextFactory and the corre-
sponding Context implementation. The
JNDI InitialContext object delegates
every naming method to the provider’s
context implementation.

Hashtable properties=new HashTable();

properties.put(Context.INITIAL_CONTEXT_

FACTORY,FACTORY_CLS_NAME);

InitialContext ic=new InitialContext(prop

erties);

Object appConfig=Ic.lookup(“java:comp/env/

appConfig”);

Implementing the Java Naming
Service – Server
Data Structure
 A naming context refers to a set
of name-object mappings. In
a hierarchical naming system, a
name in a context can map to a
child context. At the server, the
name-object mappings (bindings)
can be stored in a Map data
structure:

 public class Store {
 Map bindings=new HashMap();

 public Binding get(String name) { // get

value from data }

 public void set(String name, Binding b) {

// put value into data }

}

 A binding instance contains the
triple: the name, object to be stored,
and the object class name.

Naming Server Interface
 The naming server is a remote
interface that defines server methods
that correspond to every method on
the javax.naming.Context interface:

public interface NamingServer extends

Remote, Serializable

{

public void bind(Name name, Object object,

String className) throws NamingException,Re

moteException;

public Object lookup(Name name) throws Nami

ngException,RemoteException;

 // Other methods corresponding to methods

in javax.naming.Context

}

Name
 Each naming method in the
Context class has two overloaded
forms – one that takes in a String
name and another that takes
in a Name object. For instance,
the Context class has a method
lookup(String name) and a method
lookup(String name). The Name
object is a collection of various sub-
components in a name.
 In the case of a name ‘comp/env/
appOwner,’ the Name object represents
the list ‘{comp,env,appOwner}.’ It’s the
NameParser of a naming system that
parses the string representation of a
name and creates the corresponding
Name object. The parsing rules depend
on the naming system and its naming
parser implementation.

AP/S

by Kishore Kumar

Java Naming
Services Internals

T

Kishore Kumar works as a Java

architect at U.S. Technology

(ww.ustri.com). He Specializes

in Java and J2EE applications.

Kishore_kumar@usswi.com

Implementing a simple client/server-based JNDI naming service

 Figure 1 Java naming service components

InitialContent InitialContextFactory Naming Parser

JNDI Client

JNDI Provided Classes

1.
 c

re
at

e(
)

3.
 c

re
at

e(
)

4.
 lo

ok
up

()

5.
 lo

ok
up

()

2. getinitialContext()

client server

Service Provider Classes

Comtext Naming Server

NamingListener

7. lookup() - RMI

6. get RMI Server stub

29March 2005www.SYS-CON.com/JDJ

 There are two different kinds of
structured names that implement the
Name interface– CompositeName and
CompoundName. A CompositeName
represents a name that can span mul-
tiple naming systems.
 For instance, the name ‘cn=
aper-son, ou=ust_india,o=ust/pro-
file/publications’ represents two parts:
an LDAP name ‘cn=aperson,ou=ust_
india,o=ust’ and a File System name
‘profile/publications.’ When this name is
used in a lookup operation, the method
resolves through the LDAP naming
service and passes into the File System
naming service to find the target object.
 In a CompositeName the various
components are separated by a for-
ward slash (‘/’) character. Hence, the
given name has three components
‘{(cn=aperson,ou=ust_india,o=
ust),(profile),(publications)}’. The
first component represents a name
(compound name) in the LDAP naming
system and the last two components
represent a name in the File System
naming system. The mechanism by
which a JNDI system resolves through
multiple naming systems is known as a
naming federation. We will explore this
technique later in this article.
 A CompoundName is a name in a
single naming system. It is a conve-
nience class that can parse a string rep-
resentation of a name to create a Name
object. Its parser can be customized by
providing the required parsing syntax:

Properties syntax=new Properties();

Syntax.setProperty(“jndi.syntax.

direction”,”left_to_right”);

Syntax.setProperty(“jndi.syntax.

ignorecase”,”false”);

Syntax.setProperty(“jndi.syntax.separa-

tor”,”/”);

CompoundName name=new CompoundName(“comp/

env/appOwner”,syntax);

 This parses the string representa-
tion using the syntax provided to
create an equivalent CompoundName
in the current naming system. A typi-
cal naming parser can also use the
CompoundName to parse a string
name to a Name object:

Public class NamingParser implements

NameParser{

 Public Name parse(String name) throws

NamingException {

 return new CompoundName(name,syntax);

 }

}

Naming Server Implementation
 The naming server implementation
uses the ‘Store’ data structure to store
name-object mappings:

public class NamingServerImpl implements

NamingServer{

 private NameParser nameParser=new

NamingParser();

 private Store rootContextStore=new

Store();

 public void bind(Name name, Object

object,String className) throws

 NamingException,RemoteException{

 Store contextStore= rootContextStore;

 Object[] storeNamePair=new Object[]{rootC

ontextStore,name};

 iterateNameComponents(storeNamePair);

 contextStore=storeNamePair[0];

 name=storeNamePair[1];

 // bind the name to the given object

 contextStore.put(name,new Binding(name,cl

assName,obj,true));

 // check for NameAlreadyBoundException

 }

 private void iterateNameComponents(Object[

] storeNamePair) {

 Store contextStore=storeNamePair[0];

 Name name= storeNamePair[1];

 // iterate the name till the last compo-

nent

 while (name.size() > 1){

 Object obj=contextStore.get(name.

get(0));

 // name.get(0) gets the first component

in the given name

 // obj should be a context

 If !(obj instanceof Store){ // throw

NotContextException }

 contextStore=(Store)obj;

 // resolve the remaining name in new

context

 // get remaining name component

 name=name.getSuffix(1);

 }

 storeNamePair[0]=contextStore;

 storeNamePair[1]=name;

 }

 // other methods

}

 The lookup() method is similar to
the bind() method:

public Object lookup(Name name) throws Nami

ngException,RemoteException {

 Store contextStore= rootContextStore;

 Object[] storeNamePair=new Object[]{contex

tStore,name};

 iterateNameComponents (storeNamePair);

 contextStore=storeNamePair[0];

 name=storeNamePair[1];

 // lookup the name in the resolved context

(store)

 Binding binding=contextStore.get(name);

 // check for NameNotFoundException

 Object obj=binding.getObject();

 If (obj instanceof Store) return name; //

to represent a context

 else return obj;

}

 The returned object can be a
sub-context or a target object. If
the object found represents a con-
text (if it’s an instance of Store) then
return the name itself to tell the
client that the name represents a
context. Otherwise, return the object
found.
 The createSubContext() method
creates a sub-context (represented
as a Store instance) in the current
context. It returns a Name instance
to indicate the new context:

public Name createSubContext(Name name)

throws NamingException,RemoteException{

bind(name,new Store()); // simplified

implementation

return name;

}

 This will create a new context
(represented by a store object)
bound against the given name.

Naming Server Listener
 A naming server listener
listens for client connections
from the Context (client) implemen-
tation and returns a naming ser-
ver stub. The Context implementa-
tion uses this RMI server stub to
invoke naming methods on the
server:

NamingServerImpl server=new

NamingServerImpl();

Remote stub=UnicastRemoteObject.

export(server, rmiPort, rmiClientSocketFac-

tory, rmiServerSocketFactory)

MarshalledObject serverStub=new

MarshalledObject(stub);

ServerSocket serverSocket=new

ServerSocket(bindPort, backlog, bindAd-

dress);

// start a thread to wait for client con-

www.SYS-CON.com/JDJ30 March 2005

AP/S

nections

Socket socket=serverSocket.accept();

// create a new thread and start it to lis-

ten for new connections

ObjectOutputStream oos=new ObjectOutputStre

am(socket.getOutputStream());

out.writeObject(serverStub);

Implementing the Java Naming Service - Client
 Any JNDI service provider
should provide an implementa-
tion for the javax.naming.Context
interface and should provide an
InitialContextFactory implementa-
tion that can create a new Context
in the new naming system.

Context Implementation
 This Context implementation is an
RMI client and uses the server stub to
invoke naming server operations.
 A Context has overloaded forms
of the same naming method: one
taking a Name argument and the other
taking a String name argument. The
method that takes in a String name
argument converts the String represen-
tation of the name to a Name object
using a NameParser and invokes the
other overloaded method:

public Object lookup(String name) throws

NamingException {

 return lookup(getNameParser().

parse(name));

}

References and Referenceable
 A naming system can store serialized
Java objects directly in its object store. An
alternative and efficient mechanism is to
use references. A reference can be used
when the serialized representation is too
big or the object can’t be stored directly.
An object is stored with an associated
reference in the directory indirectly by
storing its reference.
 A reference is represented by the
Reference class. A reference consists of
an ordered list of addresses and class
information about the object being
referenced. Each address is represented
by a sub-class of RefAddr and contains
information on how to construct the
object.
 When the naming system stores
an object and it implements the
Referenceable interface, its getReference()
method will be invoked to obtain a
Reference object and stores the reference.

And when the naming system retrieves
the object from its store and it’s a
Reference, it uses the information (object
factory) on how to create the object to
create the actual object and returns it.

State Factories and the bind() Method
 A state factory transforms an object
into another object (state).
A naming system implementation uses
state factories to convert objects to an
acceptable form so it can store them.
 A state factory implements the
StateFactory interface:

public Object getStateToBind(Object

obj,Name name,Context ctx,Hashtable env);

 The JNDI framework has sup-
port for state factories that naming
service providers can make use of.
The NamingManager.getStateToBind()
method traverses the list of state fac-
tories specified in the Context.STATE_
FACTORIES environment property and
tries to find a factory that yields a non-
null result. If no state factories yield a
non-null result, the naming manager
returns the given object itself.
 The context bind() method uses
state factories to convert the object
to be bound to a state representation
that’s suitable for the naming system to
store that object. Then it checks for the
Referenceable and Reference properties
of the object before storing the object:

public void bind(Name name,Object object)

throws NamingException{

 Object state=NamingManager.getStateToBind(

obj,name,this,env);

 If (state instanceof Referenceable) {

 state=((Refernceable)state).getRefer-

ence();

 }

 if (state instanceof Reference) {

 className=((Reference)state).getClass-

Name();

 } else { className=state.getClass().get-

Name();}

 Name aName=getAbsoluteName(name);

 serverStub.bind(aName,object, className);

// need to catch exception

}

 Every context saves the environment
used to create that context. Any child
context created using the parent con-
text will also inherit the environment
(referred to as env in the code above).

 Here, every name given to the con-
text is assumed to be a relative name.
However, the context implementation
can be modified to handle names given
as URLs (java:comp/env/jdbc/aData-
Source).
 The getAbsoluteName() method
is a utility method that converts
the relative name to an absolute
name. For instance, if the context
represents the name ‘comp/env’
and the relative name given is
‘jdbc/aDataSource’ then the fully
qualified name is ‘comp/env/jdbc/
aDataSource’.

Object Factories and the lookup()
Method
 An object factory produces objects.
It accepts some information about how
to create an object, such as a reference
or a state, and then returns an instance
of the actual object.
 An object factory implements the
ObjectFactory interface:

public Object getObjectInstance(Object

info,Name name,Context nameCtx, Hashtable

env)throws Exception;

 A naming service provider uses
the NamingManager.getObjectIn-
stance() method to fetch objects
before they are returned to the caller.
This method traverses a list of object
factories specified in the Context.
OBJECT_FACTORIES environment
properties and tries to find a factory
that yields a non-null result. If the
object is a reference then this method
uses the object factory class named in
the reference:

public Object lookup(Name name) throws

NamingException {

 Name aName=getAbsoluteName(name);

 Object object=serverStub.lookup(aName);

 If (object instanceof MarshalledObject){

object=((MarshalledObject)object).get();

 } else if (object instanceof Name){ //

represents a context

 object=new ContextImpl((Name)object,serve

rStub,env);

 } else {

 object=NamingManager.getObjectInstance(ob

ject,name,this,env);

 }

 return object; // need to handle

exceptions

}

www.SYS-CON.com/JDJ32 March 2005

AP/S

Initial Context Factory Implementation
 When an InitialContext object is
created, JNDI uses the Context.INITIAL_
CONTEXT_FACTORY environment prop-
erty to identify the Initial Context Factory
implementation class and creates a con-
text that represents the root of the nam-
ing system. The InitialContext uses this
context to execute naming operations on
that naming system:

public class InitialContextFactoryImpl

implements InitialContextFactory {

 Public Context getInitialContext(Hashtable

env) throws NamingException {

 String providerURL=(String)env.

get(Context.PROVIDER_URL);

 Name name=getContextName(providerURL);

 serverStub=createServerStub(providerURL);

 return new ContextImpl(name,serverStub,en

v);

 }

}

 The getContextName() is an util-
ity method that parses the provider
URL and returns the root name. If the
provider URL isn’t provided then the
method returns an empty Name object
to denote the root of the naming system.
For instance, if the URL is ‘protocol://ser-
verName:port/comp/env,’ the getContext-
Name() returns the context name ‘comp/
env’.

Environment Properties
 The environment properties can be
provided when an InitialContext is created:

Hashtable env=new Hashtable();

env.put(Context.INITIAL_CONTEXT_

FACTORY,FACTORY_CLASS_NAME);

env.put(Context.PROVIDER_URL,”localhost”);

// naming server URL

InitialContext context=new

InitialContext(env);

 The data in the Hashtable are called
environment properties. You can also set
the state factories, object factories, URL
context factories and several other stan-
dard properties as environment property
values.

 To simplify the task of setting up the
environment required by a JNDI applica-
tion, application resource files should be
distributed along with application and
service providers. An application resource
file has the name ‘jndi.properties’ that
lists the environment properties. The
JNDI automatically reads all the resource
files (jndi.properties) from the applica-
tion’s classpath and JAVA_HOME/lib/jndi.
properties. JNDI environment properties
can also be specified through system
properties made available to the Java
program via the –D command line option
in the Java interpreter. If the environment
parameter is specified using more than
one source, then the search order is:
1. InitialContext constructor environ-

ment parameter
2. System Property
3. Application resource files (jndi.prop-

erties) in system classpath

 For properties like INITIAL_
CONTEXT_FACTORY, the first value
found is used and for properties like
OBJECT_FACTORIES, all the values found
are concatenated into a single colon-
separated list.

URL Context Factory Implementation
 URL strings can be used as names to
the InitialContext. A URL consists of the
form scheme:scheme-specific-parts (
java://localhost:8080/comp/env). Here,
‘java’ is the scheme and the rest of the
string forms the scheme-specific-parts.
 In JNDI, every name is resolved
relative to a context. Every name sup-
plied to a context is a relative name.
When an URL is used as a name to the
InitialContext, it represents an absolute
name. The InitialContext class diverts the
method invocation so that it’s processed
by the corresponding URL context
implementation rather than any under-
lying initial context implementation.
 When the InitialContext receives an
URL as a name argument to one
of its methods, it looks for a URL
context implementation. It uses
the Context.URL_PKG_PREFIXES envi-
ronment property. This property contains

a list of package prefixes. Each item in the
list refers to an URL context factory. The
factory name is constructed using the fol-
lowing rule:

package_prefix.scheme.schemeURL-
ContextFactory.

 The package prefix ‘com.sun.jndi.
url’ is always appended to the list of URL
context factory package prefix. Now
suppose that the URL_PKG_PREFIXES
property contains ‘com.widget:com.wiz.
jndi’ and the URL name is ‘ldap://local-
host:389,’ JNDI will search for the follow-
ing URLContextFactories:

com.widget.ldap.ldapURLContextFactory
com.wiz.jndi.ldap.ldapURLContextFac-
torycom.sun.jndi.url.ldap.ldapURLCon-
textFactory

 InitialContext will try to instantiate
each class in turn and invoke the getO-
bjectInstance() (object factory method)
method until one of them produces a
non-null result.

Link References
 A link reference is a symbolic refer-
ence to an object in the naming system.
Suppose there is following name in the
InitialContext: some/where/over/there.
 You can create a link reference to
‘some/where’ and bind it to the name
‘here’. Subsequently using the name
‘here/over/there’ is the same as using the
name ‘some/where/over/there’ in the nam-
ing methods.
 A link reference is represented by a
LinkRef instance. A link reference can be
de-referenced using the context.looku-
pLink() method.
 A LinkRef object can be resolved as
follows:

String ref=linkRef.getLinkName();

If (ref.startsWith(“./”)) {

// Treat it as a relative name to the cur-

rent context

linkResult=lookup(ref.substring(2));

}

else { // Treat it as an absolute name

The Java naming service is a fundamental component
of every J2EE system”“

33March 2005www.SYS-CON.com/JDJ

linkResult=new InitialContext(env).lookup(ref);

}

 The naming methods in the context class
dereference a link automatically. For instance,
the lookup() method dereferences the link if the
object returned is an instance of LinkRef:

Object result=serverStub.lookup(name);

If(result instanceof LinkRef) {

 result=resolveLink(result);

}

Naming System Federation
 Federation is the process by which a compos-
ite name (name that spans different naming sys-
tems) is resolved through the different underlying
naming systems. The whole process is transpar-
ent to the user who simply provides a name to
the naming system; the naming system takes
care of the switching to other naming systems.

The composite name ‘cn=aperson,ou=ust_
india,o=ust/profile/publications’ has three
components:
cn=aperson,ou=ust_india,o=ust
profile
publications

 In a composite name the components are
separated by the ‘/’ character. The first com-
ponent is resolved in the LDAP naming system
and the second and third components are
resolved in the File System naming system.
 The lookup() operation begins on the
LDAP context and the name component
‘cn=aperson,ou=ust_india,o=ust’ resolves to
a next naming system (nns) reference. The
naming server identifies this and throws a
CannotProceedException (from the iterateName-
Components() method)

If (obj instanceof Reference) {

If (((Reference)obj).get(“nns”)!=null) {

 cpe.setResolvedObj(obj);

 cpe.setRemainingName(name);

 throw cpe;

 }

}

 The ‘nns’ pointer is an URL that points to
the next naming system (the File System in this
example). The context will handle and process
the CannotProceedException as shown below:

try {

result=serverStub.lookup(name);

} catch (CannotProceedException cpe) {

Context nnsCtx = NamingManager.getContinuationCon-

text (cpe);

result=nnsCtx.lookup(cpe.getRemainingName());

}

 The NamingManager’s getContinuation-
Context() method uses the configured object
factories to create the next naming system
context. Since the ‘nns’ pointer is a URL, it uses
the URL Context Factories to create the new
context. The same operation is continued on
the remaining name left to be resolved on this
new context.

Summary
 This article explored the concepts of
implementing a simple client/server-based
JNDI naming service. It examined the vari-
ous basic concepts of a naming server like
Context, InitialContextFactory and Reference.
It also examined advanced concepts like
URLContextFactory, StateFactory, ObjectFactory,
Link References and Naming Federation.

Reference
JNDI Tutorial: http://java.sun.com/products/
jndi/tutorial/

www.SYS-CON.com/JDJ34 March 2005

his year will mark the tenth an-
niversary of the official launch
of Java technology. It seems like
only yesterday. No doubt there

will be celebrations similar to the five-
year anniversary, so I thought I would
take this opportunity to step back in
time and track Java’s course.
 In January 1996, less than a year
before that first launch, the first full
developer kit, JDK 1.0.2, was released.
This was my first experience of the Java
platform. Like many other developers I
had been using C and C++ and myriad
third-party libraries. Suddenly the ease
with which anyone could build a UI,
or a web applet, and make an applica-
tion both thread- and networking-
aware was exciting. I attended the first
JavaOne in 1996 and it captured that
energy, even with only 6000 attendees
it was a sellout. Sessions overflowed,
handouts disappeared in minutes, and
were never to re-appear at any JavaOne
conference again; many speakers were
overwhelmed by speaking to a large
conference for the first time.
 The JDK 1.1 release appeared a year
later and bumped along by way of
maintenance updates for many years,
finally ending with 1.1.8.
 Some of you may remember that the
only browser that initially supported 1.1
was Sun’s own Hotjava browser. This lag
in support for the latest runtime would
lead to the modular Java Plugin and Java
Web Start technology.
 JDK 1.1 also introduced JDBC, RMI
and the JavaBean model. The JavaBean
component model, while introducing
the powerful getter/setter pattern to
the Java platform, also introduced the
infamously deprecated methods in
AWT. To move to the JavaBean pattern

with as little risk as possible, AWT code
that needed updating simply called
the deprecated methods, which made
removing them later unlikely.
AWT also introduced the event-delega-
tion pattern that would be heavily used
by another step on the Java roadmap,
the Swing project.
 Project Swing, or the JFC compo-
nents, had a parallel release train
before being integrated into the JDK.
Anyone remember com.sun.swing? The
Netscape browser team already had a
technology called IFC that Netscape
had acquired and this was used as
the basis for JFC. JFC was a pure
Java graphical toolset and required a
little support from AWT. However, the
amount of work required was huge.
Essentially anyone who was working
on AWT was moved to JFC and Swing,
All new development for features like
accessibility and full drag-and-drop
were earmarked for Swing only. The
next step was to merge the Swing code
base into JDK 1.2.
 JDK 1.2 was supposed to be called
JDK 2.0. Since its release was close to the
millennium, even Java 2000 was consid-
ered. The naming discussions resulted
in Java 2 version 1.2. The release didn’t
just include Project Swing, but it did
include the Collections API, a new Java
2D rendering engine and a new sound
engine. The last two technologies were
adapted from existing third-party prod-
ucts and their integration put a strain
on the release process. Some of the bugs
introduced by this integration weren’t
fixed until the 1.4 maintenance releases
and J2SE 5.0
 Most developers have probably for-
gotten 1.2.1. It was a short-lived security
bug fix. The true maintenance bug fix

was 1.2.2. JDK 1.2.2 was also the first
time Sun released a JVM port on Linux.
The JVM itself was called the classic JVM
and used a JIT compiler.
 Waiting in the wings was the Hotspot
JVM. Sun had acquired the technol-
ogy that was used to power Smalltalk
and had spent a lot of cycles getting it
release-ready.
 Unlike the JIT compiler, the Hotspot
product was a full JVM in its own right.
It used native operating system threads,
where the classic JVM could also use the
userspace threads called green threads
and introduced new garbage allocation
techniques, finer thread management
and faster monitor locks.
 J2SE 1.3 was released in 2000 and
introduced the Hotspot JVM on all
platforms. With such a fundamental
change, it took until 1.3.1 for the JVM to
be supported by all the tool interfaces.
 The last five years are fresher in
everyone’s memory. J2SE 1.4 arrived in
2002, and introduced NIO, Java Web
Start, a 64-bit JVM and Swing focus, per-
formance tweaks and the logging API. It
was followed by the 1.4.1maintenance
release, which previewed an Itanium
port and new garbage collectors. J2SE
1.4.2 brought the 1.4 release train into
the station.
 This brings us to the present times
with J2SE 5.0. J2SE 5.0 focuses on
improved startup time, new language
features and system monitoring and
improved product quality.
 The Java platform has certainly come
a long way in 10 years, but I’m sure you’ll
agree it’s been an interesting ride.

Resources
• http://java.sun.com/features/
 2000/06/time-line.html

Core and Internals Viewpoint

Calvin Austin
Core and Internals Editor

Ten Years of
Java Technology

T

A section editor of JDJ since

June 2004, Calvin Austin

is an engineer at SpikeSource.

com. He previously led the

J2SE 5.0 release at Sun

Microsystems and also led

Sun’s Java on Linux port.

calvin.austin@sys-con.com

When Java was born, it was suddenly easy to build a UI, or a web
applet, or make an application thread- and networking-aware”“

���������������
���
���

Phoneomena products allow the enterprise to easily create
its own mobile applications or mobilize existing applications
without having to learn new technologies or make upfront
investments. With Phoneomena products you will not be
locked into any mobile platform and will not waste time and
resources learning J2ME, Brew, Windows Mobile, Palm OS
or Symbian. You will be freed to focus on your mobilization
strategy to achieve your business goals. You will literally be
able to mobilize overnight, using only the standard web
knowledge your IT team has today.

����������������
������������������������
���������������������

���������������������
���������������������
������������������

����������������������������
��������������������������

����������������������������

���
���

����������������������������

���

��

�

�

�

��

��

��

���

�

��

www.SYS-CON.com/JDJ36 March 2005

he 5.0 release of JDK introduced a
slew of new features. A powerful
technique that resulted from the JSR-
175 recommendation is the Program

Annotation Facility. It can annotate code in
a standard way and automate the genera-
tion of source code or configuration files,
helping cut down on boilerplate code.
 At the moment, the closest thing to
annotating source and generating support
file/code is through java doc tags. The popu-
lar ones are @deprecated, @author, @param
etc. However, these tags are pretty static by
nature and the information they define isn’t
encoded in the class file by the compiler
so it’s not available at runtime. A popular
implementation of this concept is XDoclet.
This is an Open Source utility that lets a
developer add metadata or attributes to
source as java doc tags. Appropriate source
files or configurations, such as deployment
descriptors, are generated later using the
ANT task provided by XDoclet. (The source
code can be downloaded from www.sys-
con.com/java/sourcec.cfm.)
 The core Java language has always had
some form of ad hoc annotation scheme.
Java doc tags are an example. Another
example is the keyword transient, which is
used to mark a member variable so it can
be ignored by the serialization subsystem.
 All this changed with the introduction
of JDK 5.0, which adds a general-purpose
customizable annotation mechanism.
This facility consists of syntax for declaring
annotation types, syntax for annotating
declarations, APIs for reading annotations,
a class file representation for annotations
and an annotation-processing tool.

Annotation and Annotation Types
 The first step in the process is defining
an annotation type. This is pretty simple to
do and looks familiar as well. An annotation-
type declaration looks like an interface dec-
laration except an “@” symbol precedes the
interface keyword. The method declaration
that goes between the braces of this declara-
tion defines the elements of the annotation

type. Of course, since we are annotating the
code and not defining behavior, logically
speaking, these methods shouldn’t throw
any exception. That means no throws clause.
Another restriction is that the return type
for these methods is restricted to primitives:
String, Class, enums, annotations and arrays
of the preceding types. The complete lists of
restrictions are as follows:
• No extends clause is permitted.Annotation

types automatically extend a marker inter-
face, java.lang.annotation.Annotation.

• Methods must not have any parameters.
• Methods must not have any type param-

eters (in other words, generic methods are
prohibited).

• Method return types are restricted to
primitive types: String, Class, enum types,
annotation types and arrays of the pre-
ceding types.

• No throws clause is permitted.
• Annotation types must not be
 parameterized.

 The following code snippet defines an
annotation type for a servlet. Presumably, we
could use this definition to annotate a servlet
and then have an annotation tool generate
web.xml. Here we define no args methods
that define the various XML attributes/ele-
ments found in web.xml. For conciseness
we have left out elements like init, load on
startup, icon etc.

public @interface Servlet {

 String servletName();

 String servletClass();

 String displayName();

 String description();

}

Declaring Annotation
 Now that we have the annotation-type
defined we can annotate our servlet using
the defined annotation type. Annotation
is a new kind of modifier that contains an
annotation type with zero or more member-
value pairs. If a member has a default value
defined in the annotation-type member
declaration then the value can be omit-
ted, otherwise, annotation must provide a
member-value pair for all members defined
in the annotation type. Annotation can be
used for modifiers in any declaration – class,
interface, constructor, method, field, enum,
even local variable. It can also be used on
a package declaration provided only one
annotation is permitted for a given pack-
age. In our case we are annotating at the
class level and the annotation precedes the
access modifier public.

@Servlet(

 servletName=”AnnotatedServet”,

 servletClass=”com.jdj.article.servlet.

AnnotatedServet”,

displayName=”AnnotatedServet”,

 description=”This is an example Annotated

Servlet”

)

public class AnnotatedServet extends

HttpServlet{...}

Techniques

by Krishan Viswanth

Java Annotation Facility –
A Primer

T

Krishan Viswanth currently

works for Capgemini, KS.

He has over nine years of IT

experience spanning a variety

of technologies.

viswanath.krishnan@
capgemini.com

JDK 5 has changed source code generation in a seminal way

Meta Annotation Purpose
@Documented Indicates that annotations with a type are to be documented by javadoc and similar

 tools by default.

@Inherited Indicates that an annotation type is automatically inherited.

@Retention Indicates how long annotations are to be retained with the annotated type.

 Three retention policies could be specified and they are CLASS, RUNTIME and SOURCE.

 If no retention annotation is present on an annotation-type declaration, the retention

 policy defaults to CLASS.

@Target Indicates the kinds of program element an annotation type applies to. The Enum

 ElementType defines various annotation types and it’s used with the Target meta-annotation

 type to specify where it’s legal to use an annotation type

Table 1 Meta annotation

37March 2005www.SYS-CON.com/JDJ

 Now, to tie all these together we will look at
how to build a simple annotation-driven frame-
work. However, before we start looking at con-
crete code samples, we will go over a bit more of
the theory behind this important addition to the
core language API.

Meta Annotation Types
 The API provides some annotation types
out-of-the-box that can be used to annotate the
annotation types. These standard annotation
types are also known as meta-annotation types.
The details are provided in Table 1.

Standard Annotation
 The Tiger release of the JDK also bundles a set
of standard annotation types. Table 2 defines the
annotation tags and their purpose.

Annotation Retention
 The consumers of annotation fall into three
categories.
• Introspectors: Programs that query runtime-

visible annotations of their own program ele-
ments. These programs will load both anno-
tated classes and annotation interfaces into
the virtual machine.

• Specific Tools: Programs that query known
annotation types of arbitrary external pro-
grams. Stub generators, for example, fall
into this category. These programs will read
annotated classes without loading them into
the virtual machine, but will load annotation
interfaces.

• General Tools: Programs that query arbitrary
annotations of arbitrary external programs
(such as compilers, documentation genera-

tors and class browsers). These programs will
load neither annotated classes nor annotation
interfaces into the virtual machine.

 The grouping of annotation consu-mers
mentioned above is determined by the retention
policy that is specified by the RetentionPolicy
enum present in the java.lang.annotation pack-
age. If the retention policy is ‘CLASS’ then the
annota-tions are recorded in the class files
but are not retained by the virtual machine.
If the retention policy is ‘RUNTIME’ then the
annotations are recorded in the class file and
are retained by the VM at runtime. The value
‘SOURCE’ causes the compiler and VM to dis-
card the annotation.

Annotation Processing Tool
 The annotation processing tool (apt) found
in JAVA_HOME/bin directory is a command-line
utility that ships with JDK 5.0. This tool looks for
annotation processors based on the annotation
in the set of specified source files being exam-
ined. Essentially the annotation processor uses a
set of reflective APIs and supporting infrastruc-
ture to process the annotations.
 When invoked, the apt goes through the
following sequence of operations: First, it
determines what annotations are present in the
source code being operated on. Next, it looks for
annotation processor factories. It then asks the

Annotation Purpose
@Deprecated A program element annotated @Deprecated is one that programmers
 are discouraged from using, typically because it’s dangerous, or because
 a better alternative exists. Compilers warn when a deprecated program
 element is used or overridden in non-deprecated code.
@Override Indicates that a method declaration is intended to override a method
 declaration in a superclass. If a method is annotated with this annotation
 type but does not override a superclass method, compilers are required
 to generate an error message.

TABLE 2 Annotation tags

www.SYS-CON.com/JDJ38 March 2005

Techniques

factories what annotations they process
and, if the factory processes an annota-
tion present in source files being operated
on, the apt asks the factory to provide an
annotation processor. Next, the annota-
tion processors are run. If the processors
have generated new source files, the
apt will repeat this process until no new
source files are generated. This high-level
sequence is indicated in Figure 1.
 To write a factory class, a developer
has to rely on packages that aren’t part of
the standard SDK. The packages used are:
 • com.sun.mirror.apt: interfaces to
 interact with the tool.
• com.sun.mirror.declaration: inter-

 faces to model the source code dec-
 larations of fields, methods, classes,
 etc.

• com.sun.mirror.type: interfaces to
 model types found in the source code.

• com.sun.mirror.util: various utilities
 for processing types and declara-
 tions, including visitors.

 These packages are bundled in tools.
jar, and so this jar file needs to be set in
the classpath to write and compile the fac-
tory class. Assuming that the path and the
classpath are set correctly, the annotation
processing tool can be invoked from the
command prompt by typing ‘apt’ followed
by the tools command-line parameters.

Using Annotation for Generating
Struts-config.xml
 For a concrete understanding of the
technology it’s imperative that we dive into
writing code and see for ourselves how
it works. We will look at how to go about
generating struts-config.xml by annotat-
ing code and using the apt tool. This
article assumes that the reader is familiar
with the Open Source MVC framework
struts. We will look at how to generate the
configuration details and the declarative
programming semantics provided in the
struts-config.xml by annotating the source
code.
 Before we get to the nitty-gritty of
annotating and generating configuration
files, we need to understand why this
needs to be done.
 We need to do this because a devel-
oper who has to write code using the
struts framework finds himself copying
and pasting information from the source
code to the deployment descriptor and
vice versa. For instance, if we change the
name of the Action class and don’t change

the XML file, the application doesn’t work
correctly. The way to sidestep this issue is
to isolate the changes to one location and
let the utility tool generate the deploy-
ment descriptor. We will cover how to use
the metadata facility to achieve this auto-
matic configuration file generation.
 Before we start we have to make sure
that we have the right development tools
to do what we’re trying to do. Currently
very few IDEs support Java 5. Among
Open Source IDEs, NetBeans 4.0 beta 2
looks promising (in spite of a few runtime
exceptions) so most of the code in this
article was written and tested with it. The
first step in the process is defining the
annotation types for the various elements
that make up the struts framework. The
component parts of the framework are:
Action, Form bean (also known as Action
Forms), Exceptions, Validator, Plug-ins etc.
 The annotation type for Struts Action
is as follows:

package com.jdj.article.atypes;

import java.lang.annotation.*;

@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.TYPE)

public @interface StrutsAction {

 String name();

 String path();

 String scope() default “session”;

 String input() default “”;

 String roles() default “”;

 String validate() default “”;

 String parameter() default “”;

 StrutsActionForward[] forward();

 StrutsActionException strutsAction

 Exception();

}

 As you can see, I have the annotation
types as return types. This is necessary
because we could have forward and excep-
tion elements defined by the action ele-

ment. The XML snippet from that struts-
config.xml that we’re trying to generate
will clarify the need for embedding other
annotation types in the action annotation-
type declaration.

<action path=”/SubmitLogon”

 type=”example.LogonAction”

 name=”LogonForm”

 scope=”request”

 input=”logon”>

 <forward name=”failure” path=”/

 MainMenu.do”/>

 <forward name=”success” path=”/

 someValidPage.jsp”/>

 <exception key=”expired.password”

 type=”example.Expired

 PasswordException”

 path=”/ExpiredPassword.

 do”/>

</action>

 The next step is to annotate the code
with the annotation type. In our case we
will annotate a struts action class. This is
done as follows:

package

import

@StrutsAction(

 name=” example.LogonAction”,

 path=”/SubmitLogon”,

 forward = {@StrutsActionForward(

 name = “failure”,

 path = “/MainMenu.do”)},

 strutsActionException =

 @StrutsActionException(

 key = “expired.password”,

 type = “example.ExpiredPassword

 Exception”,

 path = “/ExpiredPassword.do”

)

)

public class ExampleAction extends Action {

 /** Creates a new instance of

 Figure 1 Annotation processing

apt

1: getProcessorFor()

2: process()

2.1: generate()

AnnotationProcessorFactory AnnotationProcessor Now there’s a high-performance storage engine that loves Java just as much as you do:

Berkeley DB Java Edition (JE). Brought to you by the makers of the ubiquitous Berkeley DB,

Berkeley DB JE has been written entirely in Java from the ground up and is tailor-made for

today’s demanding enterprise and service provider applications.

Berkeley DB JE has a unique architecture that’s built for speed. The software executes in the JVM of your application, with no

runtime data translation or mapping required. And because it supports J2EE standards such as JCA, JMX and JTA, you can be

sure you have the widest range of options.

Experience the outstanding performance of Berkeley DB JE for yourself.
Download Berkeley DB Java Edition today at www.sleepycat.com/bdbje, and view the

presentation “Design and Implementation of a Transaction Data Manager.”

©
2

0
0

5
S

L
E

E
P

Y
C

A
T

S
O

F
T

W
A

R
E

IN
C

.
A

L
L

R
IG

H
T

S
R

E
S

E
R

V
E

D
.

Berkeley DB Java Edition
Download at www.sleepycat.com/bdbje

Javavavoom!
Get a high-performance, transactional storage engine that’s 100% Java.

bdbje05_jdj_half_r3 3/3/05 3:16 PM Page 1

ExampleAction */

 public ExampleAction() {

 }

 public ActionForward execute(ActionMapping

 mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response)

 throws Exception {

 return null;

 }

}

 Before tackling how to generate code or other
dependent files such as deployment descriptor,
we should clarify a couple of aspects presented in
the code snippet above. The StrutsAction annota-
tion type defines many elements but only a few
of them were actually declared in the real annota-
tion. This is perfectly valid because the elements
that don’t have a value declared will take the
default value defined in the annotation type.
In this case most of the values defaulted to an
empty string but the scope element has a default
value of session. So if the developer doesn’t
explicitly specify the value, the default value will
be used. In the StrutsAction annotation type, we

also have the return type for the forward element
as an array of StrutsActionForward elements. So
annotation is done by separating the values by a
comma wrapped in braces.

 forward = {@StrutsActionForward(...),

 @StrutsActionForward(...) },

 In this code snippet two action forward ele-
ment are specified and both of them are enclosed
by a brace separated by a comma. Now that we’ve
talked about annotation types and annotation,
the core concepts of annotation have been pretty
much covered.

Generating Code/Supporting Files
 The final steps in the process are the proce-
dures for generating code or support files like
deployment descriptor. This could be the hardest
part depending on the complexity of what we
are trying to do. If we are generating source code
based on annotation information then we need
to have some kind of parser generator to gener-
ate the code. JavaCC hosted at www.java.net is an
excellent parser generator implementation. Since
we are generating an XML file, we used JDOM
API to generate the deployment descriptor for
struts.

 There are two ways to do the code genera-
tion. The first is to write a driver code that uses
the reflection API and the annotation API to fig-
ure out what annotations are present and then
operate on them appropriately. The other is to
use the annotation processing tool bundled with
the JDK to process the annotation.
 In the section above we explained how the
annotation processing tool works. The annota-
tion processor that’s returned by the factory
does the actual work of generating code. In the
core processing we loop through the annotation
types and have a visitor based on the Gang of
Four’s visitor design pattern do the work. This
visitor processes the annotation on the class
declaration, method declaration, package decla-
rations etc. and does the file generation.
 The code snippet for the factory, annotation
processor and a simple visitor is as follows:

public class StrutsConfigGenerator implements

 AnnotationProcessorFactory{

 private static final Collection<String>

 supportedAnnotations

 = unmodifiableCollection(Arrays.asList(“*”));

 private static final Collection<String>

 supportedOptions =

 emptySet();

Now there’s a high-performance storage engine that loves Java just as much as you do:

Berkeley DB Java Edition (JE). Brought to you by the makers of the ubiquitous Berkeley DB,

Berkeley DB JE has been written entirely in Java from the ground up and is tailor-made for

today’s demanding enterprise and service provider applications.

Berkeley DB JE has a unique architecture that’s built for speed. The software executes in the JVM of your application, with no

runtime data translation or mapping required. And because it supports J2EE standards such as JCA, JMX and JTA, you can be

sure you have the widest range of options.

Experience the outstanding performance of Berkeley DB JE for yourself.
Download Berkeley DB Java Edition today at www.sleepycat.com/bdbje, and view the

presentation “Design and Implementation of a Transaction Data Manager.”

©
2

0
0

5
S

L
E

E
P

Y
C

A
T

S
O

F
T

W
A

R
E

IN
C

.
A

L
L

R
IG

H
T

S
R

E
S

E
R

V
E

D
.

Berkeley DB Java Edition
Download at www.sleepycat.com/bdbje

Javavavoom!
Get a high-performance, transactional storage engine that’s 100% Java.

bdbje05_jdj_half_r3 3/3/05 3:16 PM Page 1

www.SYS-CON.com/JDJ40 March 2005

Techniques

 public StrutsConfigGenerator() {}

 public Collection<String> supported

 AnnotationTypes() {

 return supportedAnnotations;

 }

 public Collection<String> supported

 Options() {

 return supportedOptions;

 }

 public AnnotationProcessor get

 ProcessorFor(

 Set<AnnotationType

 Declaration> atds,

 AnnotationProcessor

 Environment env) {

 return (AnnotationProcessor)new

 WebGeneratedAp(env);

 }

 private static class WebGeneratedAp

 implements

 AnnotationProcessor {

 private final AnnotationProcessor

 Environment env;

 WebGeneratedAp(AnnotationProcessor

 Environment env) {}

 public void process() {

 for (TypeDeclaration typeDecl :

 env.getSpecifiedType

 Declarations()){

 // GoF visitor Design Pattern

 applied here!

 typeDecl.accept(get

 DeclarationScanner(

 new WebGeneratorClass

 Visitor(), NO_OP));

 }

 }

 private class WebGeneratorClassVisitor

 xtends

 SimpleDeclarationVisitor {

 public WebGeneratorClassVisitor(){

}

 public void visitClassDeclaration(

 ClassDeclaration d)

 {

 / /Do some meaningful work here!!!

 }

 // You could have more specific decla-
rations here
 }
 }

}

 An important thing that we need
to take note of is the getProcessorFor
method in the factory. This method
returns the annotation processor
and, in our case, is an instance of the
WebGeneratedAp class. This class
extends AnnotationProcessor and
implements the no args process meth-
od. Here we loop through all the type
declarations and then have the type
declaration accept our visitor. Our visi-
tor is WebGeneratorClassVisitor and
has methods to handle the areas where
annotations occur like class declara-
tion, method declaration and package
declaration. It’s here that we read the
annotation, find out what the value
is and operate on it accordingly. The
complete working copy of the source is
provided along with this article.
 The final step in the process is to
invoke the Annotation Processing Tool.
This is typically done through the com-
mand line as follows:

apt –cp [Classpath] -nocompile

-factory com.jdj.article.gen.

StrutsConfigGenerator

-Astruts-config=F:\Article\Dev\Annotation\

 generated\struts-config.xml <path>\

 ExampleAction.java

 In this method of invocation we
used the –nocompile to ensure that the
source file specified isn’t complied. The
–classpath option specifies the class-
path required by the processor. The –A
option is ignored by the APT tool and is
used by the annotation processor to get
any specific processing-related informa-
tion. In our case, we specified the loca-
tion of the struts-config.xml in the file
system.
 The last step is to process the files
with the annotation processor. Besides
the command line, one could write an
ANT Custom Task to generate the code.
We strongly recommend that this be
done. Since more and more projects are
using ANT for automating the build pro-
cess, it makes more sense to do an ANT
build for automating code generation as
well.
 Writing an ANT task is easy and
done by writing a custom task and
extending the org.apache.tools.ant.
Task class. Once that’s done, the next
step is to define the attributes and the
corresponding setter methods for the
attributes. The core processing logic is

provided in the execute method called
by the ANT framework. In our case, we
delegate the bulk of the code genera-
tion work to the com.sun.tools.apt.
main.Main class from the tools.jar. This
is the actual byte code that’s also used
by the apt command line.
 The following XML snippet from an
ANT build shows how use the custom
ANT task:

<taskdef name=”apt”

 classname=”com.article.jdj.

 annotation.task.APTTask” >

 <classpath>

 <pathelement

 location=”F:\Article\Dev\Annotation\

 dist\Annotation.jar”/>

 </classpath>

</taskdef>

<target name=”main”>

<apt factory=”com.jdj.article.gen.

StrutsConfigGenerator” src=”F:\

Article\Dev\Annotation\src\com\jdj\article\

 action*

 .java”

 processorOption=”struts-config=

 F: \Article\Dev\Annotation\generated\

 struts-config.xml” >

 <classpath>

 <pathelement location=”C:\Sun\AppServer\

 lib\j2ee.jar”/>

 <pathelement location=”...”>

 </classpath>

</apt>

</target>

Summary
 In this article we introduced the idea
of defining annotation types, how to use
defined types as annotation and how to go
about generating code or other supporting
files based on annotation. This new and
powerful technology is transforming the
way we code. As more and more tools and
products start using this facility, develop-
ers will realize improved quality in their
code and a concomitant increase in
productivity.

Resources
• JavaCC: https://javacc.dev.java.net/
• JDOM: http://www.jdom.org/
• APT: http://java.sun.com/j2se/1.5.0/

docs/guide/apt/index.html
• Annotations: http://java.sun.com/

j2se/1.5.0/docs/guide/language/anno-
tations.html

• JSR 175: http://www.jcp.org/en/jsr/
detail?id=175

www.SYS-CON.com/JDJ42 March 2005

 JDBC is a simple and fl exible way to access a relational

database. The knock on JDBC is that it forces a developer to

familiarize himself with its API, whose use can often result in

reams of duplicate or similar code: get a connection, execute

a statement, parse a result set, etc. All of which needs to be

wrapped in a try-catch block and synchronized.

owever, in this article, I’ll describe how to use
the template method pattern to centralize an
application’s JDBC code into a single class that
can be extended using a minimum of JDBC
knowledge.

Template Method Pattern
The template method pattern is a way of expressing a

single task as a series of smaller tasks, represented as meth-
ods on a base class. These methods can then be overridden
in sub-classes to redefine parts of the overall behavior.
 Database access can be broken into steps. For writing
to the database, the steps are: get a connection, create a
state-ment and execute the statement. Reading from the
database requires the additional step of parsing the result
set. And all of this must happen within the context of a
try-catch block and a transaction.

And all this lends itself to the template method pattern.
 Database access can be simplified by defining the steps
needed to execute a SQL statement in a single base class.
Some of these methods can be concrete and some left to be
defined in the sub-class. A developer can then create sub-
classes for each of the different SQL statements he plans to
execute and override only those steps necessary.

The Solution
Start with an abstract base class that contains all the

steps necessary for executing either a read or a write to
the database using JDBC. I call my class BaseStatement
(shown in class diagram 1).
 The method execute() contains the steps taken to exe-
cute a statement (see Listing 1).

Get the Connection
The first step is to get a Connection to the database. This

is ordinarily done from a JDBC DataSource. Listing 2 shows
BaseStatement’s getConnection() method.
 On line 4, the method checks to see if the statement
already has a Connection, and if so, it returns it. (Why the
statement might already have a Connection is discussed
below in the section entitled Managing Transactions) If not,
on lines 7-9, the method gets a reference to the DataSource
from the JNDI directory, retrieves a Connection from the
DataSource pool and stores it in the member variable called
connection. Before returning the Connection to the calling
method, getConnection() turns off autocommit (line 12).

Prepare the Statement
The next step is to get the statement. I’ve chosen to use

a PreparedStatement. Listing 3 shows the getPreparedState-
ment method as well as the following step of processing the
statement (inserting the data into the SQL statement).
 On line 4, the getPreparedStatement method creates a
PreparedStatement from the Connection by passing to it the
preparedStatementText. The preparedStatementText was
passed to the BaseStatement object through the constructor
and held in the member variable called preparedStatement-
Text. The values to be inserted in the prepared statement are
also passed to the Statement object via the constructor in the
form of a List and stored in the member variable called argu-
ments (see Listing 4).
 Listing 4 Both the SQL text and the list of arguments to
be inserted into the Statement are passed to the construc-
tor and stored in member variables.

Keith Reilly is a Java architect

with MFS Investment

Management in Boston.

kreilly@mfs.com

by Keith Reilly

H

Getting there with a minimum of JDBC knowledge

Using JDBC & the Template Method

 Pattern for Database Access

Table 1 Class Diagram

Feature

BaseStatement
arguments: List

connection: Connection
commitTransaction: boolean

preparedStatementText: String
execute():List

getConnection():Connection
getPreparedStatement():PreparedStatement
processStatement(PreparedStatement): void

executeStatement(PreparedStatement):ResultSet
parseResultSet(ResultSet):List

43March 2005www.SYS-CON.com/JDJ

The processStatement method (line 7 in Listing 3) assumes that the first
object in the variable, arguments, is the first value to be inserted into the
PreparedStatement. The method that constructs the Statement must place
the arguments in the List in the appropriate order.
 This works equally well if there are no arguments. The for statement on
line 11 (Listing 3) will fail immediately and no values will be inserted into
the statement. This is exactly what we want when executing statements
that require no processing (such as SELECT * FROM COMPANIES_TABLE).

Executing a Statement
The next step in the template is executeStatement, which will execute

the statement constructed in the previous steps and return the result set
(if any). It is defined as abstract in the BaseStatement class because state-
ments that modify the database differ from query statements. Query
statements are executed through the PreparedStatement’s executeQuery
method, which returns a ResultSet. Modifying statements call the method
execute(), which returns a boolean. I’ll use sub-classes to distinguish
between statements that query and those that modify. These sub-classes
will define the appropriate executeStatement behavior.

Querying the database
For querying the database, I’ve created a sub-class called

SelectStatement that defines the method executeStatement() to return
the ResultSet returned from a call to the method executeQuery off of the
PreparedStatement (line 13 in Listing 5).
 I’ve defined SelectStatement to be abstract because it can’t define
the method ParseResultSet, which is intended to convert the results of a
query into Java objects and differs depending upon the data for which
you are querying. The parseResultSet method will be dependent on the
SQL statement passed to the SelectStatement constructor. To construct
a SelectStatement, you need to extend SelectStatement and define the
parseResultSet method.
 Listing 6 shows a method that queries the database for dealer. This
method exists on a class called DealerDAO whose sole purpose is to read
and write dealer information into the database. In this example, a dealer
contains an id (BigDecimal), a name and a number (both Strings). A
JavaBean called DealerVO represents the (value object pattern).

Additional Patterns: I’ve Introduced Two New Patterns
• Data access object (DAO) pattern: A class responsible for reading and

writing certain information to the database. It hides the SQL specific code
behind a clean interface. It contains methods such as create, remove,
update, findByPrimaryKey and additional find Methods. It presents
an object-oriented view of the data in the database. In this example,
DealerDAO is responsible for writing dealers into the database.

• Value object (VO) pattern: Represents data in the database as a JavaBean.
Most often represents a row in a table or view (though it could represent
a more complicated mapping). Makes the passing of this data between
the application tiers easier. In this example, a dealer is represented by
a DealerVO value object. DealerVO has three properties: id, name and
number.

 I’ve chosen to extend SelectStatement with an anonymous class whose
declaration begins on line 7 of Listing 6 because this statement will only be
used by the DAO’s create method. Should I need it elsewhere, I can redefine
it as an inner class and referred to it in both places.
 I call the constructor of the SelectStatement and pass it the SQL state-
ment to execute as well as the primary key (wrapped in a List). I further
define the method parseResultSet (line 12) to convert each row of the results
into a DealerVO by calling the getDealerVOFromResultSet method.
 The getDealerVOFromResultSet method is defined on the class
DealerDAO not on the Statement class (non-static inner or anonymous
classes have access to the member functions of the class in which they are

defined). This is a good architectural decision. The code for converting the
ResultSet to a Java object will live in one method and be accessible to any
other SelectStatement contained in the DealerDAO. Since the DealerDAO is
the only object responsible for reading dealers from the database, no other
class should need this method.
 Line 25 executes the newly constructed statement object that returns the
List returned from parseResultSet on line 22. It pulls out the DealerVO found,
if any, and returns it to the calling function.

Updating the Database
 For inserting, updating and deleting data in the database, I’ve created
a sub-class of BaseStatement called ModifyStatement, and I’ve defined the
executeStatement() method (line 9 of Listing 7) to call the execute() method
off the PreparedStatement passed to it. executeStatement() is defined as
returning a ResultSet, and because modifications to the database don’t create
a ResultSet, it returns null. This is OK because I’ve also defined the method
parseResultSet (which is the only method that uses the ResultSet) to be empty.
ModifyStatement is not abstract. It doesn’t need to parse a ResultSet (which
would make it dependent on the SQL statement passed to the constructor) so
all of its methods can be defined.

 To Execute a modify statement, you would instantiate a ModifyStatement
and pass to it the SQL statement to execute as well as the arguments to insert
into the SQL statement.

Listing 8 is the create method defined on the DealerDAO. It takes as its
argument a DealerVO (containing the id, name and number of the dealer to
be inserted). (Code fragments 8–11 can be downloaded from www.sys-con.
com/java/sourcec.cfm.)
 Line 4 declares a String object containing the SQL statement text. Notice
the order of the columns. Below that (on line 9), I create a List to store the

Getting there with a minimum of JDBC knowledge

Using JDBC & the Template Method

 Pattern for Database Access

www.SYS-CON.com/JDJ44 March 2005

arguments for the Statement. Notice the order of the arguments.
It matches the order of the columns in the SQL text. Specifying
both the SQL statement and the arguments in the same place
makes aligning their order easier. The ModifyStatement inherits
the processStatement method defined on BaseStatement, which
will place the arguments from the List into the SQL statement in
order.
 Lines 14 and 15 construct the ModifyStatement and line 17
executes it.

Managing Transactions
 The Statement class can manage transactions itself or let
them be managed by the calling method. In the examples we’ve
covered so far, the statement object manages transactions. In
the constructor for BaseStatement, I set the boolean member
variable commitTransaction to true. Then, the execute() method
commits the transaction if it’s true. Given this approach, a call
to the method create on the DealerDAO, which in turn executes
a ModifyStatment to create a dealer, will commit the changes
before returning to the user.
 However, the calling method may want to execute many
Statements and commit them only if all succeed. In this case, the
calling method has to manage the transaction.
 In Listing 9, I’ve added a constructor to the BaseStatement
class that takes a Connection object as well as the SQL text and
argument list. On line 9, I set the commitTransaction flag to false,
which will be checked by the Statement’s execute() method to
determine if it should commit the statement. This lets the call-
ing method handle transactions by passing in the connection
object for the Statement to use. The calling method could execute
several Statements and commit them only after all of them have
succeeded.
 I’ve overloaded the DealerDAO’s create method further to
take a Connection as well as a DealerVO. It then passes this con-
nection to the ModifyStatment (using the constructor shown in
Listing 9). Dealers created this way aren’t committed to the data-
base until the calling method calls commit() on its Connection.
The calling method can write several dealers to the database (by
calling the DealerDAO’s create method several times) and com-
mit them all at once. The original create method now calls this
new create method passing a null as the connection. This causes
the new create method to instantiate a ModifyStatement that will
manage the transaction itself (commiting all changes).

Thread Safety
 I’ve ensured the thread safety of the Statement objects by: 1.)

making the execute method synchronized, and 2.) making all
variables (except the Connection), local to the execute method.
No two Statements share variables so multiple Statements can
execute without interfering with each other. The one exception is
the Connection object. It’s stored as a member variable because
it can be passed in at construction time. Two statements sharing
the same connection could execute simultaneously and affect
each other (by committing or closing the connection). In this
case, the calling method must ensure thread safety.

Exception Handling
 Another benefit of the Template method approach to JDBC
is that exception handling is located in one place. In code frag-
ment 1, each of the steps to executing a Statement is wrapped in
a try-catch block. I omitted the catch logic for the sake of brevity.
Listing 11 contains all the code to the execute method. On line
19, the method catches any exception thrown during the course
of executing a Statement and rethrows it as a DAOException (a
simple a wrapper around the original exception). Calling meth-
ods can choose to catch this or allow it to wind further up the
stack.
 The execute method cleans up all the database resources
in a finally block. The ResultSet and PreparedStatement are
closed, releasing any resources that they may be holding. If the
Statement is managing transactions, the Connection is closed
and returned to the pool.

Conclusion
 Using the approach described above, database access is as
simple as instantiating a class. The JDBC specific code, as well
as the exception handling and synchronization, are primarily
contained in one class. The developer only has to provide the
SQL statement and work with the result set (on database reads).
Flexibility is maintained because each step in executing a state-
ment can be redefined through a sub-class, and furthermore, the
DAO pattern can be used to wrap the statement thereby hiding
the schema dependent code.

References
• JDBC: http://java.sun.com/products/jdbc/
• Template Method Pattern: Design Patterns by Erich

Gamma, Richard Helm, Ralph Johnson, John Vlissides
• DAO pattern: http://java.sun.com/blueprints/

corej2eepatterns/Patterns/DataAccessObject.html
• Value Object Pattern: http://java.sun.com/j2ee/patterns/

ValueObjectml

Feature

Listing 1 The execute method of the class BaseStatement
1 public synchronized List execute()
2 throws DAOException {
3
4 List results = new ArrayList();
5 PreparedStatement preparedStatement
6 = null;
7 ResultSet resultSet = null;
8
9 try {
10
11 getConnection();
12 preparedStatement =
13 getPreparedStatement();
14
15 processStatement(preparedStatement);
16 resultSet =
17 executeStatement(preparedStatement);
18 results =

19 parseResultSet(resultSet);
20
21 if (commitTransaction)
22 connection.commit();
23
 } catch (Exception e) {
 // Exception handling omitted for the sake of brevity.
 }
 return results;

}

Listing 2 Getting the connection
1 protected Connection getConnection()
2 throws NamingException, SQLException {
3
4 if (connection == null) {
5 Context jndiContext = new

45March 2005www.SYS-CON.com/JDJ

6 InitialContext();
7
8 DataSource ds =
9 (DataSource)
10 jndiContext.lookup
11
12 (JNDINames.DATASOURCEJNDINAME);
13
14 connection = ds.getConnection();
15 connection.setAutoCommit(false);
16 }

return connection;
}

Listing 3 Getting and processing the statement.
1 protected PreparedStatement
2 getPreparedStatement()
3 throws Exception {
4
5 return
6 connection.prepareStatement(preparedStatem
7 entText);
8 }

9
10 protected void processStatement(PreparedStatement
11 preparedStatement)
12 throws Exception {

13 for (int i = 0; i < arguments.size(); i++) {

 preparedStatement.setObject(i + 1, arguments.get(i));
 }
}

Listing 4
1 public BaseStatement(String
2 preparedStatementText, List arguments) {
3
4 this.preparedStatementText =
5 preparedStatementText;
6 this.arguments = arguments;
7 this.commitTransaction = true;
 }

Listing 5
1 public abstract class SelectStatement
2 extends BaseStatement {
3
4 public SelectStatement(
5 String selectStatementText, List
6 args) {
7
8 super(selectStatementText, args);
9 }
10
11
12 protected ResultSet
13 executeStatement(
14 PreparedStatement
15 preparedStatement) throws Exception {

 return
preparedStatement.executeQuery();
 }
}

Listing 6
1 public DealerVO
2 findByPrimaryKey(BigDecimal primaryKey)
3 throws DAOException {
4
5 List parameters = new ArrayList();
6 parameters.add(primaryKey);
7
8 SelectStatement selectStatement =
9 new SelectStatement(
10 “Select * from MFS_DEALERS where
11 DEALER_ID = ?”,
12 parameters) {
13
14 public List parseResultSet(
15 ResultSet resultSet) throws Exception {
16
17
18 List results = new A
19 rrayList();
20
21 if (resultSet.next()) {
22 results.add(
23
24 getDealerVOFromResultSet(resultSet));

25 }
26
27 return results;
28 }
29 };
30 List results =
31 selectStatement.execute();

 if (results != null && results.size() > 0)
 return (DealerVO) results.get(0);
 else
 return null;
}

Listing 7
1 public class ModifyStatement extends
2 BaseStatement {
3
4 public ModifyStatement(
5 String preparedStatementText,
6 List arguments) {
7 super(preparedStatementText,
8 arguments);
9 }
10
11 protected ResultSet
12 executeStatement(
13 PreparedStatement
14 preparedStatement)
15 throws Exception {
16
17 preparedStatement.execute();
18
19 return null;
20 }
21
22 protected List
23 parseResultSet(ResultSet resultSet)
 throws Exception {
 return null;
 }

}

www.SYS-CON.com/JDJ46 March 2005

 Are your Java programs littered with a multitude of

randomly placed System.out.println statements and stack

traces? When you add debugging messages to a class in a

project, are the outputs of your messages interleaved among

dozens of messages from other developers, making your mes-

sages difficult to read? Do you use a simple, hand-rolled logging

API, and fear that it may not provide the flexibility and power

that you need once your applications are in production? If you

answered yes to any of the above questions, it’s time for you to

pick an industrial-strength logging API and start using it.

his article will help you choose a logging API by
evaluating two of the most widely used Java logging
libraries: the Apache Group’s Log4j and the java.util.
logging package (referred to as “JUL”). This article
examines how each library approaches logging,

evaluates their differences and similarities, and offers a few
simple guidelines that will help you decide which library to
choose.

Introduction to Log4j
 Log4j is an open source logging library developed as a sub-
project of the Apache Software Foundation’s Logging Services
Project. Based on a logging library developed at IBM in the
late 1990s, its first versions appeared in 1999. Log4j is widely
used in the open source community, including by some big
name projects such as JBoss and Hibernate.
 Log4j’s architecture is built around three main concepts:
loggers, appenders, and layouts. These concepts allow
developers to log messages according to their type and
priority, and to control where messages end up and how
they look when they get there. Loggers are objects that your
applications first call on to initiate the logging of a message.
When given a message to log, loggers generate Logging-
Event objects to wrap the given message. The loggers then

hand off the LoggingEvents to their associated appenders.
Appenders send the information contained by the Log-
gingEvents to specified output destinations – for example,
a ConsoleAppender will write the information to System.
out, or a FileApppender will append it to a log file. Before
sending LoggingEvent information to its final output target,
some appenders use layouts to create a text representation
of the information in a desired format. For example, Log4j
includes an XMLLayout class that can be used to format
LoggingEvents as strings of XML.
 In Log4j, LoggingEvents are assigned a level that indi-
cates their priority. The default levels in Log4j are (ordered
from highest to lowest): OFF, FATAL, ERROR, WARN, INFO,
DEBUG, and ALL. Loggers and appenders are also assigned
a level, and will only execute logging requests that have a
level that is equal to or greater than their own. For example,
if an appender whose level is ERROR is asked to write out a
LoggingEvent that has a level of WARN, the appender will not
write out the given LogEvent.
 All loggers in Log4j have a name. Log4j organizes logger
instances in a tree structure according to their names the
same way packages are organized in the Java language. As
Log4j’s documentation succinctly states: “A logger is said
to be an ancestor of another logger if its name followed by
a dot is a prefix of the descendant logger name. A logger is
said to be a parent of a child logger if there are no ancestors
between itself and the descendant logger.” For example, a
logger named “org.nrdc” is said to be the child of the “org”
logger. The “org.nrdc.logging” logger is the child of the “org.
nrdc” logger and the grandchild of the “org” logger. If a
logger is not explicitly assigned a level, it uses the level of
its closest ancestor that has been assigned a level. Loggers
inherit appenders from their ancestors, although they can
also be configured to use only appenders that are directly
assigned to them.
 When a logger is asked to log a message, it first checks that
the level of the request is greater than or equal to its effective
level. If so, it creates a LoggingEvent from the given message
and passes the LoggingEvent to its appenders, which format
it and send it to its output destinations.

Introduction to JUL
 The java.util.logging package, which Sun introduced in
2002 with Java SDK version 1.4, came about as a result of

Joe McNamara is a software

developer and logging guru

at Quantum Leap Innovations,

an innovator of intelligent

software. At Quantum Leap

Innovations, he works on a

revolutionary multiagent

system technology for the

seamless and dynamic

integration of wide numbers

of applications, systems, and

human users.

jem@quantumleap.us

by Joe McNamara

T

Which logging library
 is better for you?

Feature

47March 2005www.SYS-CON.com/JDJ

JSR 47, Logging API Specification. JUL is extremely
similar to Log4j – it more or less uses exactly the same
concepts, but renames some of them. For example, ap-
penders are “handlers,” layouts are “formatters,” and Log-
gingEvents are “LogRecords.” Figure 1 summarizes Log4j
and JUL names and concepts. JUL uses levels the same
way that Log4J uses levels, although JUL has nine default
levels instead of seven. JUL organizes loggers in a hierarchy
the same way Log4j organizes its loggers, and JUL loggers
inherit properties from their parent loggers in more or
less the same way that Log4j loggers inherit properties
from their parents. Concepts pretty much map one-to-
one from Log4j to JUL; though the two libraries are dif-
ferent in subtle ways, any developer familiar with Log4j
needs only to adjust his or her vocabulary to generally
understand JUL.

Functionality Differences
 While Log4j and JUL are almost conceptually identical,
they do differ in terms of functionality. Their difference can
be summarized as, “Whatever JUL can do, Log4j can also
do – and more.” They differ most in the areas of useful ap-
pender/handler implementations, useful formatter/layout
implementations, and configuration flexibility.
 JUL contains four concrete handler implementations,
while Log4j includes over a dozen appender implementa-
tions. JUL’s handlers are adequate for basic logging – they
allow you to write to a buffer, to a console, to a socket, and
to a file. Log4j’s appenders, on the other hand, probably
cover every logging output destination that you could think
of. They can write to an NT event log or a Unix syslog, or
even send e-mail. Figure 2 provides a summary of JUL’s
handlers and Log4j’s appenders.
 JUL contains two formatter classes: the XMLFormatter
and SimpleFormatter. Log4j includes the corresponding
layouts: the XMLLayout and SimpleLayout. Log4j also
offers the TTCCLayout, which formats LoggingEvents into
content-rich strings, and the HTMLLayout, which formats
LoggingEvents as an HTML table.
 While the TTCCLayout and HTMLLayout are useful,
Log4j really pulls ahead of JUL in the formatter/handler
arena because of the PatternLayout. PatternLayout in-
stances can be configured with an enormous amount
of flexibility via string conversion patterns, similar to
the conversion patterns used by the printf function in C.
In PatternLayout conversion patterns, special conversion
characters are used to specify the information included
in layout’s formatted output. For example, “%t” is used
to specify the name of the thread that started the logging
of the message; “%C” is used to specify the name of the
class of the object that started the logging of the message;
and “%m” specifies the message. “%t: %m” would result
in output such as “main thread: This is my message.” “%C
- %t: %m” would result in output such as “org.nrdc.My-
Class - main thread: This is my message.” The Pattern-
Layout is extremely useful, and JUL’s two formatter
classes don’t come anywhere near to matching its versa-
tility. It’s not uncommon for JUL users to write their own
custom formatter class, whereas most Log4j users generally
need to just learn how to use PatternLayout conversion
patterns.
 While both Log4j and JUL can be configured with configu-
ration files, Log4j allows for a broader range of configuration

possibilities through configuration files than JUL does. JUL
can be configured with .properties files, but until J2SE 5.0 the
configuration of handlers was only on a per-class rather than
a per-instance basis. This means that if you are going to be
using a pre-Tiger SDK, you’ll miss out on useful configura-
tion options, such as the ability to set up different FileHan-
dler instances to send their output to different files.
 It’s important to note that pre-Tiger JUL can easily be
configured to write to multiple output files in code, just not
through its default configuration mechanism. Log4j can be
configured with .properties and/or XML files, and append-
ers can be configured on a per-instance basis. Also, Log4j

Log4j Name JUL Name Purpose

Logger

Appender Handler

Logger

Layout

LoggingEvent

Level

Formatter

LogRecord

Level

Entrance point from outside applications into logging framework; handles
requests to log messages

Receives LoggingEvents/LogRecords from Loggers, formats them with a
Layout/Formatter, and send them to their output destination

Converts the information contained in a LoggingEvent/LogRecord into a
String of a desired format

An Object that encapsulates a message to be logged; contains the message
as well as other information such as the message’s priority (Level) and the
Class where the message is being logged from.

Indicates the priority of a LoggingEvent/LogRecord; also, Loggers and
Appenders/Handlers have a Level; stipulating the threshold for
LoggingEvents/LogRecords that they will log

LOG4J AND JUL IMPORTANT CONCEPTS AT-A-GLANCEFIGURE 1

www.SYS-CON.com/JDJ48 March 2005

allows developers to associate layout instances with ap-
pender instances, and confi gure layouts on a per-instance
basis. This includes PatternLayout instances – you can set
the conversion pattern each uses in the confi guration fi le.
During development, it usually isn’t a problem to recom-
pile an application to adjust its logging confi guration; after
deployment, however, you may want to be able to tweak
or even completely reconfi gure your application’s logging
without recompiling. In that case, Log4j offers more fl ex-
ibility, especially pre-Tiger.
 Log4j provides a lot of functionality that JUL lacks, al-
though JUL is catching up. JUL could defi nitely be extended
to do what Log4j does – you could write more handlers,
reimplement the PatternLayout for JUL, and upgrade JUL’s
confi guration mechanism, all without extreme diffi culty.
But why do that when Log4j has had those features for
years?

Which Library Do You Choose?
 Important decisions such as these typically make project
leaders lose sleep and go prematurely gray. Luckily, this deci-
sion can be made very easily by examining the answers to
three simple questions.

Question One
 Do you anticipate a need for any of the clever handlers
that Log4j has that JUL does not have, such as the SMTPHan-
dler, NTEventLogHandler, or any of the very convenient
FileHandlers?

Question Two
 Do you see yourself wanting to frequently switch the format
of your logging output? Will you need an easy, fl exible way to
do so? In other words, do you need Log4j’s PatternLayout?

Question Three
 Do you anticipate a defi nite need for the ability to change
complex logging confi gurations in your applications, after
they are compiled and deployed in a production environ-
ment? Does your confi guration sound something like, “Severe
messages from this class get sent via e-mail to the support guy;
severe messages from a subset of classes get logged to a syslog
deamon on our server; warning messages from another subset
of classes get logged to a fi le on network drive A; and then all
messages from everywhere get logged to a fi le on network drive
B”? And do you see yourself tweaking it every couple of days?
 If you can answer yes to any of the above questions, go with
Log4j. If you answer a defi nite no to all of them, JUL will be
more than adequate and it’s conveniently already included in
the SDK.

Conclusion
 Log4j and JUL are very similar APIs. They differ conceptually
only in small details, and in the end do more or less the same
thing, except Log4j has more features that you may or may not
need.
 Keep in mind as you migrate to your chosen logging library
that logging may affect the performance of your application.
Make its impact as light as possible by reusing references to
loggers; keep a static or instance pointer to loggers that you
use, rather than calling Logger.getLogger(“loggerName”) every
time you need a logger. Use common sense in your placement
of log statements – do not place them in tight, heavily iterated
loops.
 This article is not an in-depth tutorial on how to use Log4j or
JUL, and, in fact, has glossed over a number of useful features
in both libraries, such as MBean support (in J2SE 5.0, you’ll
be able to set JUL logging levels remotely using JMX), and
ResourceBundle support. There are also a number of advanced
features that only Log4j has, such as fi lter chaining and Object-
Renderers. The Internet is full of great tutorials on how to use
both libraries, including a number of articles in JDJ’s archives;
be sure to check them out before you begin coding.

Resources
• Log4j’s home page: http://logging.apache.org/log4j
• JUL’s home page: http://java.sun.com/j2se/1.4.2/docs/

guide/util/logging
• Aggarwal, V. “Third Party Logging API.” Java Developer’s

Journal, Vol. 5, issue 11: http://sys-con.com/story/
?storyid=36144

• Banes, J. “Building the Ultimate Logging Solution.” Java
Developer’s Journal, Vol. 9, issue 5: http://sys-con.com/
story/?storyid=44698

• Writing a sweet Log4j Appender that sends instant mes-
sages: www-106.ibm.com/developerworks/ java/library/
j-instlog/

• For those who don’t like JUL or Log4j, try the Logging
Toolkit for Java from IBM: www.alphaworks.ibm.com/tech/
loggingtoolkit4j

Feature

���������� ��������

���������������

������������������������

����������������������������

������������

����������������������������������

��������������������������

��

��
�����������

�������������������������

������������

������������������

������������

��������������

�����������������

��

�������������������������

�����������������������������������

��������������������������������������

��
���������������������������������

�������������� ���

�������������� ���
������������

���������� ��������

��������������

�������������

�������������

������������

����������������������������������

���

��������������������������������������

��������������������������

�������������������

����������������������������������

������������

LOG4J INCLUDES SOME VERY CLEVER AND USEFUL APPENDER IMPLEMENTATIONSFIGURE 2

www.SYS-CON.com/JDJ50 March 2005

o fast, it runs too slow, you’ve
got to make the number show.
Diddle de bop, da la de doop,
sitting around and feeling

groovy.

Speed Is as Speed Does
 Many moons ago I was working on a
project that had to be sped up and we
had the benefit of a very experienced
consultant to help us out. Fresh from
his business-class flight and clutching
his pay-as-you-go expense account
lunch, our management team eagerly
led him over to where our assembled
developers waited in awe (and with a
certain amount of natural coder-sapiens
resistance to the hired gun who’d come
to town to sheriff us).
 Like a surgeon approaching a sick
patient we expected a briefcase to be
opened revealing dozens of tools for
analyzing memory leakage, profiling
garbage collection across multiple
threads, searching out deadlocks and
everything else we assumed was slow-
ing down the program. Instead all he
produced was a simple red stopwatch.
 All that matters to the user is how
long a given scenario takes and wheth-
er it’s perceived as slow or not. The
first thing to do was to identify which
tasks were too slow, figure out what re-
sponse time would be acceptable, and
then keep working back against that
benchmark.

Apples and Apples
 The idea is to focus on real user
scenarios and their actual end-to-end
response times. Instead of our zippy
high-end boxes, dust off older, slower
machines and dedicate them to doing
the benchmarks. Us spoiled developers
often run the latest wizzo kit and don’t
appreciate the realities of the boxes our
code actually runs (or walks on) in the
field.

Look Under the Hood
 Having identified the slow scenarios,

the next step is to identify where the
time is going. Probably no single tool
can yield all that information, and
techniques can vary from simple
tracelogs of the current clock time at
various stages in the program through
to powerful local and total time method
breakdowns. Garbage collection, file
I/O, page faults, all need to be observed
and understood.

Fix What’s Broke, Forget What’s Not
 Looking at the analysis from the run-
ning application can yield a bunch of
fix candidates. But rather than jumping
in and starting to redesign everything,
it’s good to prove first that there will be
a real benefit before doing any work.
Like writing a unit test before program-
ming, it may be better to create dummy
fixes that simulate the corrected code
without being functionally complete.
The exercise might involve changing a
method to hard coding a result instead
of an expensive piece of computation,
or putting data in a stale cache and
running performance tests to see if the
fancy auto-rebuilding dancing cache
is really worth doing. Before creating a
solution, you have to know there’s a real
problem as opposed to a perceived one
you just feel like polishing. Patch fixes
can be created for dummy fixes, ap-
plied and run against a full build on the
benchmark box to see what affect they
have and, by extrapolation, the benefit
fully functional fixes will bring to the
bottom line.

Optimize Code Paths
 Sometimes single method calls result
in an explosion of code where a leaf
method is being executed thousands
of times. With the execution time of the
lowest-level method being gauged in
fractions of milliseconds, this becomes
significant. The solution is to rewrite the
code path to avoid such a deluge. The
change itself might not be particularly
difficult but without a good tool to get
the problem on the radar, perhaps as

a result of an n squared or even n to
the n algorithm, it might never even be
considered a possible problem.

Minimize IO
 One way to produce big performance
improvements is to reduce the amount
of file reads and writes and socket ac-
cess. Some data needs to be re-read fre-
quently because it’s volatile, but objects
such as icons or definition files are good
candidates to access once and cache in
library registries. Socket I/O is another
place to look as well. We found that the
problem with one application was in the
latency of the conversation, not in the
amount of data being sent across the
wire. It was overcome by batching data
packets together into larger-grained
messages.

Cache Model Data
 Using a cache to speed something
up can be either a silver bullet or fool’s
gold. The latter is like someone who
claims they get great mileage from their
car by not driving it. If the program is
fast enough to begin with, caches aren’t
needed, so the first port of call should
be to see if there are other unexplored
avenues to make things quicker. If a
cache is required then it comes with the
health warning that you not only have
to build it, you need to know when the
data you’re caching might become stale.

Leave Your Assumptions at the Door
 One of the most startling things about
tuning a program is that sometimes a lot
of fancy code that was initially designed
to help performance isn’t that useful.
Ironically the clever algorithms might
actually cause harm. While they may
add nothing significant to the bottom
line, they can make the code harder
to read and understand and affect its
maintainability. This is part of the phi-
losophy behind the XP mantra “Make it
work, make it right, make it fast.” Until
you know what’s slow, don’t try to make
it faster.

Desktop Java Viewpoint

Joe Winchester
Desktop Java Editor

Go Fast
It Runs Too Slow

G

Joe Winchester is a

software developer

working on WebSphere

development tools for

IBM in Hursley, UK.

joewinchester@sys-con.com

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess
of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject
to change by the Publisher without notice. No conditions other than those set forth in this “General Conditions
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the
content of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the
discretion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred
positions” described in the rate table. Cancellations and changes to advertisements must be made in writing
before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

 Altova www.altova.com 978-816-1600 4

 Business Objects www.businessobjects.com/dev/p26 888-333-6007 26-27

 ceTe Software www.dynamicpdf.com 800-631-5006 33

 Common Controls www.common-controls.com +49 (0) 6151/13 6 31-0 45

 DataDirect www.datadirect.com/jdj 800-876-3101 Cover IV

 EV1 Servers www.ev1servers.net 800-504-SURF 23

 Fitech Laboratories www.fitechlabs.com/grid 646-495-5076 37

 Google www.google.com/jdj 650-623-4000 43

 Information Storage & Security Journal www.issjournal.com 888-303-5282 51

 IT Solutions Guide www.sys-con.com/it 888-303-5282 49

 Java Developer’s Journal www.sys-con.com/jdj 888-303-5282 55

 Jinfonet Software www.jinfonet.com/jp3.htm 301-838-5560 15

 M7 www.m7.com/d7.do 866-770-9770 21

 Microsoft www.msdn.microsoft.com/visual 9

 Nexaweb www.nexaweb.com 31

 Northwoods Software Corp. www.nwoods.com/go 800-434-9820 47

 Parasoft Corporation www.parasoft.com/jtest_JDJ 888-305-0041 7

 Phoneomena www.phoneomena.com 352-373-3966 35

 ReportingEngines www.reportingengines.com 888-884-8665 17

 SAP www.sdn.sap.com 25

 Sleepycat Software www.sleepycat.com/bdbje 510-597-2128 39

 Software FX www.softwarefx.com 800-392-4278 Cover III

 Sun Microsystems www.developers.com/prodtech/javatools/jsenterprise/downloads 19

 WebRenderer www.webrenderer.com +61 3 6226 6274 41

 ZeroG Software www.zerog.com 415-512-7771 Cover II

 Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

www.SYS-CON.com/JDJ52 March 2005

ince Adobe released the first
public PDF Reference in 1993,
a number of PDF utilities and
libraries, supporting all kinds

of languages and platforms, have
been made available to users and
developers alike. However, support
for Adobe’s technology has lagged in
Java application development. And
this is curious because PDF docu-
ments tend to be a popular way of
storing and interchanging informa-
tion when dealing with enterprise
information systems – an applica-
tion domain that Java technology
is particularly well suited to. Yet it
seems that, until recently, mature,
capable PDF support wasn’t read-
ily available to Java applications
developers.
 PDFBox (an Open Source project
released under the BSD license) is a
pure Java library that lets developers
read and create PDF documents. It has
features such as:
• Extracting text, including Unicode

characters
• Easy integration with text search

engines like Jakarta Lucene
• Encryption/Decryption of PDF

documents
• Importing/Exporting of form data

in FDF and XFDF formats
• Appending to existing PDF

documents
• Splitting a single PDF into multiple

documents
• Overlaying one PDF document on

top of another

PDFBox API
 PDFBox has been designed to
represent PDF documents using
familiar object-oriented paradigms.
The data contained in a PDF docu-
ment is a collection of basic object
types: arrays, booleans, dictionaries,
numbers, strings and binary streams.
PDFBox captures these basic object
types in the org.pdfbox.cos package
(the COS Model). While it’s possible
to create any desired interactions

with a PDF document using only
these objects, it requires an intimate
knowledge of the internals of PDF
documents and the techniques
used to represent higher-level con-
cepts. For example, objects such as
pages and fonts are represented as
dictionaries with specialized attri-
butes; deciphering all these various
attributes and their types requires
tedious consultation of the PDF
Reference.
 For this reason, the org.pdfbox.
pdmodel package (the PD Model) sits
on top the COS Model and provides
a high-level API that accesses PDF
document objects in a more familiar
manner (see Figure 1). Objects
such as PDPage and PDFont can be
found in this package, which encap-
sulates their lower-level COS model
counterparts.
 A word of caution to developers:
the PD Model offers many nice fea-
tures but is still a work in progress.
In some instances, use of the COS
Model may be required to access a
particular piece of PDF functionality.
Consequently, all PD Model objects
can retrieve the corresponding

COS Model object that they repre-
sent, so it’s always possible to start
with the PD Model and drop down
to the COS Model when the required
piece of functionality is found to be
missing.
 Now that the general capabilities
of PDFBox have been discussed a few
examples of its use are appropriate.
We will start by reading an existing
PDF document:

PDDocument document =

 PDDocument.load(“./test.pdf”);

 This operation will cause the PDF
file to be parsed and an in-memory
representation of the document will
be created. To facilitate the efficient
handling of large documents, PDFBox
only stores the document structure
in memory; objects such as images,
embedded fonts and page content are
cached in a temporary file.
 Note: When finished using a
PDDocument object, care should
be taken to invoke the close()
method on the document object to
release resources used during its
creation.

Documents

S

Ben Litchfield is a business

systems consultant in the

development and integration

practice at LPA Systems. He

has been the lead developer of

PDFBox for the past two years.

Ben holds a B.S. in software

engineering from the Roches-

ter Institute of Technology and

has been providing enterprise

application solutions for the

past five years.

 ben.litchfield@lpasystems.com

by Ben Litchfield
Making PDFs Portable
Integrating PDF and Java technology

 Figure 1 PD Model and COS Model diagram

53March 2005www.SYS-CON.com/JDJ

Text Extraction and Lucene Integration
 In an information retrieval age when applications are
expected to have searching and indexing capabilities
regardless of the medium, the ability to organize and
catalog information into a searchable format is critical.
This is simple for text and HTML documents, but PDF
documents have more structure and meta-information
that makes it difficult to extract the underlying text. The
PDF language is similar to Postscript in that objects are
drawn as vectors on the page at certain positions. For
example:

/Helv 12 Tf

0 13.0847 Td

(Hello World) Tj

 This set of instructions changes the font to Helvetica
size 12, moves the caret to the next line and renders the
string “Hello World.” These command streams are usu-
ally compressed and the order in which the glyphs are
displayed on the screen is not necessarily the order in
which the characters appear in the file, so it isn’t always
possible to simply extract text strings directly from the
raw PDF document. However, PDFBox has a sophisticated
text-extraction algorithm that deals with this and other
complexities, letting a developer get the text of the docu-
ment as if reading off its rendered form.
 Lucene, which is part of the Apache Jakarta project, is
a popular Open Source search engine library. Lucene lets
developers create an index and do complex searches on a
large volume of textual content based on that index. Since
Lucene has adopted text as the common denominator for
content, it’s the developer’s responsibility to convert the
data contained in other desired file formats to text to use
Lucene. For example, file formats such as Microsoft Word
and StarOffice documents have to be converted to text
before they can be added to a Lucene index.
 PDF files are no exception, but PDFBox makes it easy to
include a PDF document in a Lucene index by supplying a
special object that does the integration. A basic PDF docu-
ment can be converted to a Lucene document with a single
statement:

Document doc =

 LucenePDFDocument.getDocument(file);

 This operation parses the PDF document, extracts
the text and creates a Lucene document object that can
then be added to the index. As mentioned above, PDF
documents also contain metadata such as author infor-
mation and keywords that are important to track
when indexing PDF documents. Table 1 shows the
fields that PDFBox will populate while creating the
Lucene document.
 This integration makes it easy for developers to support
simple searching and indexing of PDF documents with
Lucene. Of course, some applications require more sophis-
ticated text-extraction methods. In that case, the PDFText-
Stripper class can be used directly, or extended to handle
these complex requirements.
 By extending this class and overriding the showCharac-
ter() method, many aspects of text extraction can be con-

trolled. For instance, an implementation of this method
can use the x, y positioning information to limit the
inclusion of certain blocks of text in the extraction. One
use might exclude all of the text above a certain y-coordi-
nate value effectively excluding an unwanted document
header.
 Another example: Oftentimes a group of PDF docu-
ments may have been created from forms and the
source data are no longer available. In other words, the
documents all have some interesting text at similar
locations on the page, but the form data used to fill the
document out are no longer available. For example, a
collection of cover letters that have the name and address
at the same location in the document. In this case, an
extension of the PDFTextStripper class can be used as
a sort of screen-scraping device to extract the desired
fields.

Encryption/Decryption
 A popular PDF feature allows for encrypting docu-
ment contents and setting access controls limiting who
can view the unencrypted document. Specifically, a PDF
document is encrypted with a master password and
optionally a user password. If a user password has been
provided, then a PDF reader such as Acrobat will prompt
for a password before letting the document be viewed.
The master password is required to change document
permissions.
 The PDF specification lets creators of PDF documents
restrict certain operations when viewing the PDF in Acro-
bat. Some of the available document restrictions are:
• Printing
• Changing content
• Extracting text

 A full explanation of PDF document security lies
outside the bounds of this article and interested devel-
opers should reference the relevant sections of the PDF
specification and evaluate its capabilities. The security
model used in PDF documents is pluggable and lets differ-
ent security handlers be employed when encrypting
documents. As of this writing, PDFBox supports the
“Standard” security handler, which is what most PDF
documents use.

 Table 1 Lucene Fields populated by PDFBox

Lucene Field Name Description

path Filesystem path if loaded from a file

url URL to PDF

contents Entire text content of PDF document

summary First 500 characters of document

modified The date/time of the PDF according to the file or URL

uid A unique identifier for Lucene

CreationDate From PDF metadata

Creator From PDF metadata

Keywords From PDF metadata

ModificationDate From PDF metadata

Producer From PDF metadata

Subject From PDF metadata

Trapped From PDF metadata

www.SYS-CON.com/JDJ54 March 2005

 To encrypt a document, it must
first be assigned a security handler
and then encrypted with a master
password and user password. For
example, the following code encrypts
a document so a user can open it in
Acrobat without entering a password
(i.e., no user password), but can’t
print the document using the access
control mechanism.

//load the document

PDDocument pdf =

 PDDocument.load(“test.pdf”);

//create the encryption options

PDStandardEncryption encryptionOptions =

 new PDStandardEncryption();

encryptionOptions.setCanPrint(false);

pdf.setEncryptionDictionary(

 encryptionOptions);

//encrypt the document

pdf.encrypt(“master”, null);

//save the encrypted document

//to the file system

pdf.save(“test-output.pdf”);

 For a more complete example, refer-
ence the source code for the encryption
utility included in the PDFBox distribu-
tion: org.pdfbox.Encrypt.
 Many applications can generate
PDF documents but don’t allow control
over the document’s security options.
PDFBox can be used here to intercept
and encrypt the PDF before it’s sent to
the user.

Form Integration
 When an application’s output is a
series of form field values, it is usually
desirable to let the user save the form
for record keeping. PDF technology is
a great choice for this kind of output.
A developer can write code to output
PDF instructions manually to draw
images, tables and text. Or encapsulate
the data in XML and use an XSL-FO
engine to create a PDF document.
However, these approaches can be
time-consuming, error-prone and
inflexible. A better approach for simple
forms might be to create a template
and generate a filled-in document for
any given set of input data based on
the template.
 A form many of us may be familiar
with is the Employment Eligibility
Verification, or I-9 form: http://uscis.
gov/graphics/formsfee/forms/files/i-
9.pdf

 Using one of the example applica-
tions distributed with PDFBox, the form
field names can be listed:

java org.pdfbox.examples.fdf.PrintFields

i-9.pdf

Another example utility populates a
given field with textual data:

java org.pdfbox.examples.fdf.SetField i-

9.pdf NAME1 Smith

 Opening the PDF document in Ac-
robat shows that the “Last Name” field
has been filled in. This functionality
can be recreated in code:

PDDocument pdf =

 PDDocument.load(“i-9.pdf”);

PDDocumentCatalog docCatalog =

 pdf.getDocumentCatalog();

PDAcroForm acroForm =

 docCatalog.getAcroForm();

PDField field =

 acroForm.getField(“NAME1”);

field.setValue(“Smith”);

pdf.save(“i-9-copy.pdf”);

 It’s also possible to extract the values
of a form field that has been previously
populated, as below:

PDField field =

 acroForm.getField(“NAME1”);

System.out.println(

 “First Name=” + field.getValue());

 Acrobat offers the option of export-
ing and importing form data in a
special file format called “Forms Data
Format.” These files come in two fla-
vors, FDF and XFDF. An FDF stores the
form data in the same format as PDF,
while XFDF stores data in XML format.
PDFBox handles both FDF and XFDF
data with a single object: FDFDocu-
ment. The following snippet shows
how to export FDF data for the I-9 form
above:

PDDocument pdf =

 PDDocument.load(“i-9.pdf”);

PDDocumentCatalog docCatalog =

 pdf.getDocumentCatalog();

PDAcroForm acroForm =

 docCatalog.getAcroForm();

FDFDocument fdf = acroForm.exportFDF();

fdf.save(“exportedData.fdf”);

PDFBox Form Integration Steps
1. Create PDF Form Template using

Acrobat or other visual tool
2. Track the name of each desired form

field
3. Store the template PDF where the

Documents

 Figure 2 PDFViewer

Utility Description
org.pdfbox.Decrypt Decrypt a PDF document, requires the master password.

org.pdfbox.Encrypt Encrypt a PDF document.

org.pdfbox.ExportFDF Export form data in FDF format.

org.pdfbox.ExportXFDF Export form data in XFDF format.

org.pdfbox.ExtractText Extract text from a PDF document.

org.pdfbox.ImportFDF Import form data in FDF format.

org.pdfbox.ImportXFDF Import form data in XFDF format.

org.pdfbox.Overlay Overlay one document on top of another, useful for a template PDF
that contains a header or footer.

org.pdfbox.PDFSplit
Split a multi-page PDF into a series of single page PDF documents.
Uses Splitter object, a class that can be extended to define where splits occur,
the default is every page.

org.pdfbox.PDFViewer A PDF debugging utility, shows the internal document structure.
See Figure 2.

 Table 2 PDFBox Utilities

55March 2005www.SYS-CON.com/JDJ

application can access it
4. When the PDF is requested, use PDFBox to parse the

template PDF
5. Populate the required form fields
6. Stream the PDF back to the user

Utilities
 Besides the library APIs mentioned above, PDFBox also
has a set of command-line utilities. Table 2 lists the class
name of each utility along with a short description.

Remarks
 The PDF specification weighs in at 1,172 pages so
implementing it is quite an undertaking. As such,
PDFBox is distributed with the proviso that it is a work
in progress, with new features being added over time.
Its main weakness is in creating PDF documents from
scratch. However, there are several other Open Source
Java projects that can be used to fill the gap. For in-

stance, the Apache FOP project lets programmers
generate a PDF from a specialized XML document that
describes the PDF document. Also, iText provides a high-
level API for creating document elements such as tables
and lists.
 The next version of PDFBox will add support for the
new PDF 1.5 object stream and cross-reference streams.
After that will be support for embedding fonts and images.
Hopefully through efforts like PDFBox, robust support
for PDF technology can be made available for Java
applications.

References
• PDFBox: http://www.pdfbox.org/
• Apache FOP: http://xml.apache.org/fop/
• iText: http://www.lowagie.com/iText/
• PDF Reference: http://partners.adobe.com/asn/tech/pdf/

specifications.jsp
• Jakarta Lucene: http://jakarta.apache.org/lucene/

Java support for PDF has been spotty, but now the Open Source
PDFBox project lets Java developers read and create PDF documents”“

Only$6999
ONE YEAR
12 ISSUES

Subscription Price Includes FREE JDJ Digital Edition!

www.SYS-CON.com/JDJ
or 1-888-303-5282

The World’s Leading Java Resource
Is Just a >Click< Away!

The World’s Leading
i-Technology Publisher OFFER SUBJECT TO CHANGE WITHOUT NOTICE

JDJ is the world’s premier independent,
vendor-neutral print resource for the
ever-expanding international community
of Internet technology professionals
who use Java.

The World’s Leading Java Resource
Is Just a >Click< Away!

www.SYS-CON.com/JDJ56 March 2005

 Reach behind your television and yank the cable out of the

wall. Do you hear that noise? Not the kids screaming about

their movie. Look at the screen. What you see is white noise:

random bits of white, black and gray changing constantly.

What does this have to do with movie magic or Java3D? What

if a spell could conjure roaring fi res, fl uffy clouds, rippling wa-

ter, naturally grained wood, smooth marble and even realistic

terrains? That spell is available to us thanks to the inventive

mind of Dr. Ken Perlin.

Who Was That Math Man?
 Ken Perlin is a professor in the department of computer
science at New York University. In 1997 he won an Academy
Award for Technical Achievement from the Academy of Mo-
tion Picture Arts and Sciences for his procedural texturing
techniques, which are widely used in feature fi lms and televi-
sion. He also had a big part in the computer animation in the
movie “TRON.” The techniques pioneered by Dr. Perlin allow
programs to generate a wide range of realistic special effects
effi ciently. The foundation for these effects is a mathematical
function called Perlin noise.

What Was That Noise?
 Procedural texturing is the art of using an algorithm to
generate a texture. Procedural techniques are not limited
to texturing and can be applied to geometry, motion, color
or any other thing you can imagine. Procedural techniques
abstract the details of a scene or sequence into an algorithm.
Parameters on the algorithm allow a variety of results to be
achieved with the same algorithm. An example of procedural
geometry was in my last article (“When Mars Is Too Big to
Download,” JDJ, September 2004) where we used parameters
to vary the detail and roughness of the generated terrain. The
advantage of using procedural techniques is that the details
are generated, saving the cost of explicitly storing and retriev-
ing them.

 To make realistic special effects, we need a way to generate
natural looking randomness. You might think that random
numbers would be suffi cient to accomplish this, but you
would only be partially right. (See Figure 1.) Random num-
bers are typically generated without regard to past values.
This lack of correlation can lead to abrupt changes between
adjacent values and an unnatural special effect. What we
need is a repeatable, smooth, non-cyclic random function
whose results vary with the parameters we provide. Perlin
noise was designed to do just that.
 While the implementation details of Perlin noise are be-
yond the scope of this article, we do need a conceptual model
to use it. The noise function accepts a number of double
parameters and returns a double value between +1 and –1.
One-dimensional noise is the result of generating random
numbers at regular intervals and smoothly interpolating
noise values in between using a high-order polynomial. This
can be represented by a smooth curve as shown in Figure 1.
Two-dimensional noise does the interpolation in two dimen-
sions forming a wavy noise surface. The three-dimensional
noise can’t be depicted graphically, but its foundation is a
lattice. The three parameters represent the three dimensions
of the lattice from which the noise value is calculated. This

Mike Jacobs is a technical

architect working at the

Mayo Foundation for Medical

Education and Research. He

has developed CPU hardware,

microcode, application

components and applications

in the fi nancial and healthcare

industries. He has extensive

design and implementation

experience in object-oriented

languages including Smalltalk,

C++, and Java.

jacobs.michael@mayo.edu

Copyright 2004 © Mayo Foundation for
Medical Education and Research

by Michael Jacobs

Feature

 Figure 1 Random numbers change abruptly compared to Perlin noise

by Michael Jacobs

Casting Perlin’s
Movie Magic in Java3D

How did they do that?

57March 2005www.SYS-CON.com/JDJ

lattice consists of 256 by 256 by 256
points representing random numbers
between which values are smoothly
interpolated to calculate the noise. The
noise value at the integer lattice loca-
tions is zero, while the values between
the locations follows the same high-
order polynomial mentioned above. A
Java reference implementation called
ImprovedNoise is available from Dr.
Perlin’s home page and a modifi ed ver-
sion is included with the source code
for this article.
 This probably sounds pretty mysteri-
ous, so let’s put this magic to work with a few examples.

Casting Our First Spell: Blur
 In my last article, we generated terrains with colors as-
signed based solely on elevation. Looking closely at some of
the resulting terrains, you may have noticed that the colors
created a layered effect. For this article, the FractalWorld3
example uses your choice of random numbers or Perlin noise
to blur the colors to eliminate the layered affect. Have a look at
Figure 2 to see this example in action.
 In this example, the noise function is used to blur the
boundaries between colors to make the transitions less
apparent. The effect is implemented by nudging the
color index with the noise function as shown in part in
Listing 1.
 The color index is determined normally and then a delta
value is calculated with the noise function. The sum of the
index and the delta value is rounded and clamped to create
the new color index. This method uses the row, column and
elevation as arguments to the noise function. All three are
scaled down to focus the noise based on trial and error. You
can think of the divisors as a zoom function into the noise.
Because the noise is defi ned in a limited-size lattice, the
zoom factor focuses the range: higher zoom results in less
noise range. Finding the right recipe for an effect is mostly
an art but luckily others have shared their recipes.

Texturing with Noise
 A popular use for noise is to generate the colors on a tex-
ture. We can apply the texture to a shape, giving the appear-
ance of natural materials like wood or marble. Have a look at
Figure 3 for an example of an image produced by the Perlin-
NoiseSphere.
 Java3D supports texturing of a shape by setting the texture
image on the appearance object. The PerlinNoiseSphere ex-
ample uses a Java3D Sphere primitive as the shape and Perlin
noise to generate the texture. The Sphere primitive is used
in this example so some texturing details can be automati-
cally done for us. Setting up the texture on the appearance is
shown in part in Listing 2. The getImage() method is where
the magic happens. The recipe is used to determine the
noise values and the PerlinNoiseSphere example interprets
the values as colors. Before I disclose the secret to this trick,
I should mention that there’s no relationship between how
the recipe creates the texture and how nature creates the
material. These recipes have been arrived at through trial
and error and bit of luck. The results look amazingly close to
the real thing, which teaches us that: In 3D graphics, there’s
nothing like a great fake.

 The recipe for the wood texture in Listing 3 is decidedly
simple.
 The grain value is determined by the noise method using
the image row and column as parameters. The color for the
image pixel is based on the red, green and blue values calcu-
lated with the grain. Creating static texture images with noise
is interesting, but the power of noise is even greater when
combined with animation.

Animated Behavior
 A Java3D behavior links keyboard, mouse or temporal
events with changes to the scene or view. For example, the
keyboard or mouse can be used to update the view allowing
us to move the virtual camera through the scene. Java3D in-
cludes this support with the KeyNavigatorBehavior, MouseRo-
tate, MouseTranslate and MouseZoom behaviors. Time can be
used to animate the movement or morph the shape attributes
in our scene and Java3D includes subclasses of Interpolator
for this as well. While there are a number of behaviors avail-
able in Java3D, it’s likely you’ll eventually need to create your
own behavior and Java3D is designed for that.
 When a behavior is created, the constructor typically
defi nes the triggering or wake-up condition such as a key-
board or mouse event, a number of frames or the passage of
time. Behaviors are added to the scene like any other Java3D
object.

Figure 2 Blurring the color layers with random numbers and Perlin noise

Figure 3 Perlin noise can be used to generate natural-looking materials like wood

lattice consists of 256 by 256 by 256
points representing random numbers
between which values are smoothly
interpolated to calculate the noise. The
noise value at the integer lattice loca-
tions is zero, while the values between
the locations follows the same high-
order polynomial mentioned above. A
Java reference implementation called
ImprovedNoise
Perlin’s home page and a modifi ed ver-
sion is included with the source code
for this article.
 This probably sounds pretty mysteri-
ous, so let’s put this magic to work with a few examples.

Casting Our First Spell: Blur
 In my last article, we generated terrains with colors as-
signed based solely on elevation. Looking closely at some of

Casting Perlin’s
Movie Magic in Java3D

www.SYS-CON.com/JDJ58 March 2005

When your scene is initially rendered, Java3D calls the initial-
ize() method where your implementation should set the
trigger. When Java3D detects the triggering event, it calls the
processStimulus() method on your behavior. Your implemen-
tation of this method does its thing and then must reset the
trigger. The documentation for the Behavior class is excellent,
so refer to it for more details.
 The ElapsedTimeBehavior example is the basis for the ani-
mation examples in this article. When triggered, this behavior
calls the tick() method on the configured listener after the
specified number of milliseconds has passed. Milliseconds
are used as the trigger rather than the number of frames so
it runs consistently across different computers. Let’s use this
behavior to recreate the animation of a movie special effect in
Java3D.

StargateTM J3D
 In 1994, Kleiser-Walczak created special effects for the
movie “Stargate.” One of those special effects was to create
a vertical liquid doorway that would transport anything
entering it across the galaxy. The original effect was done
with an advanced particle system, but we can approximate
it with Java3D and Perlin noise. The approach is to create a
surface with fluid-like waves that rise and fall with time. The
waves of the surface can be created with a height map with
the height of the waves determined by a fractal function of
noise. (Refer to my previous article for an overview of frac-
tals.) Using a fractal approach creates “self-similar” ripples
in the waves. The animation of waves can be accomplished
by “scrolling” through the noise by changing one of the
noise parameters with time. A single frame of the results is
captured in Figure 4.
 My first attempt to implement the surface used the Geom-
etryInfo class. Many Java3D examples use this convenient util-
ity class so many Java3D programmers depend on it. I quickly
found that the general implementation was killing animation
performance.
 Despite attempts to reduce memory burn in my last article,
the implementation of GeometryInfo internally makes a copy
of coordinates, colors, etc. Since our approach is to change the
geometry in real-time, making a copy of thousands of floating-
point numbers took a lot of time. To address this, I abandoned
the use of GeometryInfo and used a feature of GeometryArray
called “by reference.” This feature lets the original arrays be
used directly eliminating copying completely.
 Let’s go over the highlights of moving away from the Geom-
etryInfo class.
 In many ways, using the geometry array classes is very
similar to using the GeometryInfo class. One detail that the
GeometryInfo class handles for us is called the vertex format.
A vertex format is used to determine how much information
is kept for each vertex. Examples of the vertex information
include coordinates, normals, texture coordinates and colors.
The vertex format is a parameter on the constructor of geom-
etry array classes such as IndexedTriangleStripArray. A typical
vertex format is implemented as a logical or of several integers
each representing a type of vertex information as shown in
Listing 4.
 Note the use of BY_REFERENCE to indicate the direct use of
our arrays. The coordinates and normals round out the vertex
format for the Stargate effect. The coordinates represent the
physical shape, but what about the normals? Many Java3D
programmers are intimidated by the math behind normal
generation. To add to this anxiety, dropping the use of Geom-
etryInfo eliminates the convenience of the NormalGenerator.
Why is this important? Java3D supports smooth shading mak-
ing our hard-edged triangles look smooth. Shading requires
that normal vectors be created, so now we need to generate
our own normal vectors. Shading has nothing to do with shad-
ows, but rather how light affects the color of a surface.

Don’t Panic, It’s Normal!
 Java3D supports shading by varying the color intensity
on triangles based on the position of the light and view. The
color intensity is based on the angle of inflection of the light
relative to the view and the material properties of the surface.

Feature

 Figure 5 For smooth shading, facet normal vectors for each triangle are averaged to create a vertex normal

 Figure 4 Noise can be used to create a Stargate effect

59March 2005www.SYS-CON.com/JDJ

In other words, Java3D needs to know the direction a triangle
is pointing. Mathematically, the direction of a triangle can be
expressed as a unit vector that is perpendicular to the surface
of the triangle. For our discussion, we will call this the facet
normal. Taking the cross product of two vectors defined by the
three points of the triangle and then normalizing the result
into a unit vector determines the facet normal. The vector
math package in Java3D includes extensive support for vector
operations making cross-products and normalization trivial.
The Java3D cross-product and ultimately the facet normal fol-
low the “right-hand” rule. The right-hand rule is a convention
for specifying the order of the two vectors in the cross-product
and the direction of the resulting normal vector. (Refer to
Figure 5 for an example.) We can use the vector package to
compute the facet normals of each triangle. However, we need
to take an additional step since shading needs something
called vertex normals.
 Vertex normal sounds contradictory, since technically
you can’t determine a normal for a point. Recall in my last
article that Java3D can interpolate colors across a triangle
using vertex colors. Since shading is based on the direction
of the surface, you can think of a vertex normal as a way of
specifying the direction of the surface at that vertex. Java3D
calculates the color at each vertex based on the vertex normal
and interpolates the color across the triangle. If all of the ver-
tex normals of a triangle point in the same direction, the color
doesn’t vary across the triangle. This is called flat shading and
results in faceted hard edges. To allow Java3D to smooth out
the hard edges, we have to smooth the vertex normals at the
shared vertices.
 To accomplish this last step in the normal generation
process, vertex normals are calculated by averaging the facet
normals of the neighboring triangles sharing the vertex. The
vertex normal for the shared vertices is set to the average value
resulting in a smooth color interpolation across the neighbor-
ing triangles. This tricks your eye into thinking the surface is
smooth.

Deep Below the Surface
 The source code for this article includes the Surface ab-
stract class that encapsulates a height map with vertex normal
generation. The height map is implemented with an Indexed-
TriangleStripArray that uses the “by reference” support. The
elevations of the height map are determined by subclasses
such as the Water class. The Water class uses a fractal sum of
Perlin noise called fractional Brownian motion shown in List-
ing 5.
 The result of the fractional Brownian motion is used to
interpret wave heights. This recipe combined with back
lighting and smooth shading creates a single frame of wavy
water. We must take additional steps to enable Java3D to make
those waves move. Ordinarily, Java3D optimizes the internal

representation of our shape for top performance. Before we
can change the geometry of a live or compiled object, Java3D
needs to know our intent. An exception is thrown if we at-
tempt to read or write attributes without warning Java3D. Our
code can express our need to access certain read and write
operations by setting the capabilities of the object of interest.
During animation of the Stargate, the example must read the
geometry, change the elevations, and set the new normals. We
inform Java3D of our intent by setting the capabilities in the
Water class as shown in Listing 6.
 We face one last step to complete our migration from
GeometryInfo. Updating the geometry in real-time is com-
plicated by the multithreaded implementation of Java3D.
Activating behaviors, rendering the scene and updating
geometry are done on separate threads. To update the
geometry data in a thread-safe manner, we must defer the

 Figure 6 Updating Java3D geometry in real-time must be done via a GeometryUpdater

 Figure 7 The turbulence noise function produces lumpy noise

What if a spell could conjure roaring fires, fluffy clouds,
rippling water, naturally grained wood, smooth marble

and realistic terrains?”
“

www.SYS-CON.com/JDJ60 March 2005

update to an implementer of the GeometryUpdater interface.
To update the height of the waves, we must call the updat
eData(GeometryUpdater updater) method on the underly-
ing IndexedGeometryArray. Figure 6 depicts this in a UML
sequence diagram.
 When Java3D triggers the ElapsedTimeBehavior, our imple-
mentation calls the tick() method on the StarGateEffect object.
This object calls nextFrame() on the Water object, which is
responsible for updating the wave heights. The Water object
calls the updateData(GeometryUpdater gu) method passing
itself as the GeometryUpdater allowing it to gain thread-safe
access to the geometry and thus the referenced array data
representing the elevations and normals. This approach to
changing the geometry in real-time can be applied to chang-
ing textures.

Buckle Up: Turbulence Ahead
 Perlin found that taking a fractal sum of the absolute
value of noise created a useful recipe. The absolute value

of the noise creates a lumpier-looking noise curve by
turning troughs into peaks. The resulting recipe is called
turbulence and it’s useful for creating flames, clouds and
marble. The implementation of turbulence is similar to the
function in Listing 4 except the absolute value of the noise
is summed. If turbulence is interpreted as texture colors
and animated, it looks like a smoldering field of lava. The
LavaFieldEffect example uses turbulence to change the
texture of a surface in real-time. A single frame of this
example is shown in Figure 7.
 The Lava class is a subclass of Surface and is responsible
for updating the texture. Similar to the Water class, Lava
must set the proper capabilities so the appearance and
texture can be read and updated. The vertex format for
the Lava must also include the texture coordinates option
GeometryArray.TEXTURE_COORDINATE_2. The Lava class
implements the ImageComponent2D.Updater interface
so the texture can be updated in a thread-safe manner.
The colors are interpreted as shown in Listing 7 using the
texture column as x, the row as y and the number of frames
as z.
 The trigonometric sine of turbulence can be used to
create a marble texture as shown in Figure 8. The Perlin-
NoiseSphere example implements an option to create the
marble texture. This example isn’t animated but demon-
strates that useful noise recipes can be created on top of
other recipes. Combining recipes is key to creating terrains
with noise.

Terrains Revisited
 Careers and even companies have been built with
fractals and noise. F. Kenton Musgrave worked with Benoit
Mandelbrot and eventually completed his doctoral thesis
entitled “Methods for Realistic Landscape Imaging.” Dr.
Ken Musgrave is a leading authority on procedural tech-
niques for terrain generation. He started Pandromeda, a
company dedicated to creating procedural worlds through
a product named MojoWorld. A number of the most stun-
ning, realistic computer-generated effects for Twentieth
Century Fox’s movie, “The Day After Tomorrow,” were
created with MojoWorld. A noise-based terrain-generation
recipe originated and shared by Dr. Musgrave is called a
ridged multifractal.
 The ridged function uses the absolute value of Perlin
noise and turns it upside down. This approach is similar to
turbulence turning the peaks of lumpy noise into troughs
leaving ridges resembling mountains or sand dunes. See
Figure 9 to visualize this process.
 Using a fractal sum of the ridge function creates
the terrain. The ridged function is called multifractal be-
cause the roughness of the surface varies with elevation.
Unlike the midpoint displacement method described
in my last article, there’s no terrain size requirement to
make the algorithm work. The midpoint displacement
approach depends on the results of other vertices and
the number of vertices on a side must be a power of two
minus one. The ridge multifractal algorithm interprets
elevation based on the noise parameterized with the
longitude and latitude of a vertex similar to the two-di-
mensional noise surface in Figure 1. The elevation of each

Feature

 Figure 8 Turbulence can be used to create a marble texture

 Figure 9 The absolute value of noise is turned upside down to form the ridged function used to generate terrains

61March 2005www.SYS-CON.com/JDJ

vertex can be calculated independent of other vertices
because of the inherent continuity and coherence of
Perlin noise. This vertex independence makes the algo-
rithm ideal for terrain tessellation allowing a more distant
terrain to use fewer triangles than closer areas. While
terrain tessellation isn’t part of this article, the Fractal-
World4 example does demonstrate the ridged multifractal
algorithm.
 The FractalWorld4 example uses the Water class and
RidgedFractalTerrain class to generate terrains such as
Figure 10. As you might guess, the RidgedFractalTerrain
class is a subclass of Surface. Because the terrain isn’t
changed during runtime, no capabilities are set, but the
vertex format includes GeometryArray.COLOR_3 to allow
for vertex coloring. The example uses noise to nudge the
color index to eliminate the layering of colors. The water is
added to the scene along with the terrain, and Java3D takes
care of clipping the water along the shorelines for free. You
can invoke the example with animated water but it can be
slow since the waves are animated across the entire water
surface including underground.

The End?
 Perlin noise is a powerful tool limited only by your imagina-
tion. There are many other uses of noise to create even more
special effects including smoke, flames, volumetric fog, clouds
and even facial expressions. Just like in the movies, these will
have to wait for a sequel.

Acknowledgements
 I would like to thank Jeff Ryan, Scott Gerard and Al Spohn
for reviewing this article. “Stargate” is a registered trademark of
Metro-Goldwyn-Mayer Studios Inc.

References
• Dr. Ken Perlin’s home page: http://mrl.nyu.edu/~perlin/
• Java reference implementation of noise: http://mrl.nyu.

edu/~perlin/noise/
• Dr. Ken Perlin’s GDC noise tutorial: http://www.noisemachine.

com/talk1/
• “Stargate” special effects done by Kleiser-Walczak: http://www.

kwcc.com/works/ff/star.html
• Dr. Ken Musgrave’s home page: http://www.kenmusgrave.

com/
• Pandromeda home page: http://www.pandromeda.com/
• “Texturing & Modeling: A Procedural Approach” by David S.

Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin and
Steven Worley, Morgan Kaufmann Publishers, 2003.

• Ken Musgrave’s doctoral dissertation: http://www.kenmus-
grave.com/dissertation.html

Listing 1
// Normalize the height value to a
// color index between 0 and NUMBER_OF_COLORS - 1
float index = (NUMBER_OF_COLORS - 1)*((100f - elevation) / 100f);
float delta = 1.5f *(float)ImprovedNoise.noise(row/3.7,
 elevation/7.4, col/3.7);
// Nudge the color index with the noise
int answer = Math.round(index + delta);
// Clamp the index value
if(answer < 0) answer = 0;
if(answer > NUMBER_OF_COLORS - 1) answer = NUMBER_OF_COLORS - 1;

Listing 2
// Create the texture for the sphere
Texture2D texture =
 new Texture2D(
 Texture2D.BASE_LEVEL,
 Texture2D.RGBA,
 IMAGE_SIZE,
 IMAGE_SIZE);
texture.setImage(0, getImage());
texture.setEnable(true);
// Set the optional quality settings
texture.setMagFilter(Texture2D.NICEST);
texture.setMinFilter(Texture2D.NICEST);
appearance.setTexture(texture);

Listing 3
// x = column, y = row, z = static #
double noise = noise(x, y, z) * 15.0;
double grain = noise - Math.floor(noise);
int red = 71 + (int) (164.0 * grain);
int green = 34 + (int) (74.0 * grain);
int blue = 34 + (int) (24.0 * grain);

Listing 4
IndexedTriangleStripArray geometry =
 new IndexedTriangleStripArray(

 vertexCount,
 GeometryArray.COORDINATES
 | GeometryArray.NORMALS
 | GeometryArray.BY_REFERENCE,
 indexCount,
 stripCounts);

Listing 5
static public double fBm(
 double x,
 double y,
 double z,
 int H,
 int octaves) {
 double answer = 0;
 for (int i = 0; i < octaves; i++) {
 answer = answer + noise(x, y, z) / (1 << H * i);
 x = x * 2;
 y = y * 2;
 z = z * 2;
 }
 return answer;

Listing 6
setCapability(Shape3D.ALLOW_GEOMETRY_READ);
Geometry geometry = getGeometry();
geometry.setCapability(GeometryArray.ALLOW_REF_DATA_READ);
geometry.setCapability(GeometryArray.ALLOW_NORMAL_WRITE);
geometry.setCapability(GeometryArray.ALLOW_REF_DATA_WRITE);

Listing 7
double turbulance = ImprovedNoise.turbulance(x, y, z, OCTAVES);
double color = Math.min(192 * turbulance, 192);
int red = 255 - (int) (0.3 * color);
int green = 192 - (int) (color);
int blue = 0;

 Figure 10 Noise can be used to generate terrains and water

www.SYS-CON.com/JDJ62 March 2005

@ the Backpage

LOOH.com is the world’s first
and only source of live deep-sky
celestial images. Every night
SLOOH’s telescopes scan the

skies and deliver stunning images to
computer screens around the world in
seconds. SLOOH offers a schedule of
fascinating five- and 10-minute “mis-
sions” that probe galaxies, nebulas and
comets. Any SLOOH subscriber can
reserve time on a telescope and direct
its actions. A user needs only a 56Kb
modem connection to the Internet
and a Web browser. No knowledge of
astronomy is necessary. Empowering
novices to remotely control a pro-
fessional observatory is completely
unprecedented in human history.
 Let’s steal a look behind the scenes
to understand how SLOOH’s technol-
ogy conquers the skies. Its operations
are housed at two locations. SLOOH
built a unique robotic astronomical
observatory in the Canary Islands and
manages enterprise-class servers at a
collocation site (a.k.a. colo) in New York
City.
 SLOOH’s unmanned observatory is
connected to the outside world only
through the Internet. It operates auton-
omously, with occasional remote main-
tenance over the Internet. The SLOOH
observatory hardware consists of two
automated domes, each with a robotic
mount, a wide field imaging system and
a high magnification imaging system.
Each imaging system has a telescope, a

CCD astro-imaging camera, filters and
a focuser. All functions of these systems
are under software control running on
personal computers.
 SLOOH’s key technological com-
ponent is the custom control software
running in the observatory. It is written
in the Java programming language. This
software:
• Handles communication with the
 servers
• Controls motorized actuation of the
 equipment
• Gathers data from instruments
• Performs image processing

 The observatory’s automatic image
processing takes raw output from the
cameras and makes stunning color
images on-the-fly. Nobidy – not even
the Keck telescopes or NASA – has ever
succeeded in doing that.
 The colo installation contains the
systems that handle all user interac-
tion, scheduling and administration. A

SunFire V120 running Solaris 8 hosts an
Apache 2 Web server and a MySQL 4 da-
tabase. Verisign certificates are used for
secure Web communications. The site
makes extensive use of JSP and servlets.
JRun integrates Java-based functionality
and the Web site, the database and the
observatory. A PC running Red Hat 8
hosts a Macromedia Flash Communica-
tion Server that powers the slick graph-
ics of the Flash client plug-in.
 Messages are sent between the colo
and observatory using a custom RMI-
based Remote Observatory Messaging
Protocol. Every few minutes, the colo
sends a command over the Internet
to the observatory telling it to ob-
serve a particular celestial object. The
observatory autonomously points the
telescope, selects filters anf focuses and
photographs the object. The images
are sent from the observatory to the
colo. Every action of the observatory is
signaled with a message. For example,
when the camera shutter opens, a mes-
sage is sent. The images and messages
are broadcast to each and every user’s
browser. The browser not only displays
the image; it also displays telemetry
showing almost every action at the
observatory.
 SLOOH was designed to convey the
experience of being inside a working
observatory. Pre-recorded voice audio
germane to the objects is available
to the user, providing a personalized
“astro-tour guide.”

by Matt BenDaniel

SLOOH.com Delivers
Astronomy to the Mainstream

S

Matt BenDaniel is co-founder

and chief technology officer

of Slooh.com. He serves as

product manager, software

architect and astronomer. In

addition, BenDaniel designed,

built and programmed Slooh’s

autonomous astronomical ob-

servatory. Hel has been a lead-

ing-edge software consultant

and developer for 25 years.

matt@slooh.com

 Finally, developers are a technology’s strength. The best thing you can
do is to provide developers with useful tools and access to underlying
code — and get out of the way.

 When it was launched, Java empowered software developers to inno-
vate and create a new vision for the Web. Now that open source develop-
ment has become mainstream, a new period of software innovation has
arrived, where the best technologies (not just the best-marketed ones)
can actually win. And there’s no going back.
 Ten years later, and looking at the decade ahead, the future of software
looks bright indeed.

From Here to Ubiquity
–continued from page 6

� � � � � � � � � � � � � �

